1afo
From Proteopedia
DIMERIC TRANSMEMBRANE DOMAIN OF HUMAN GLYCOPHORIN A, NMR, 20 STRUCTURES
Structural highlights
FunctionGLPA_HUMAN Glycophorin A is the major intrinsic membrane protein of the erythrocyte. The N-terminal glycosylated segment, which lies outside the erythrocyte membrane, has MN blood group receptors. Appears to be important for the function of SLC4A1 and is required for high activity of SLC4A1. May be involved in translocation of SLC4A1 to the plasma membrane. Is a receptor for influenza virus. Is a receptor for Plasmodium falciparum erythrocyte-binding antigen 175 (EBA-175); binding of EBA-175 is dependent on sialic acid residues of the O-linked glycans. Appears to be a receptor for Hepatitis A virus (HAV).[1] [2] [3] [4] [5] [6] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe three-dimensional structure of the dimeric transmembrane domain of glycophorin A (GpA) was determined by solution nuclear magnetic resonance spectroscopy of a 40-residue peptide solubilized in aqueous detergent micelles. The GpA membrane-spanning alpha helices cross at an angle of -40 degrees and form a small but well-packed interface that lacks intermonomer hydrogen bonds. The structure provides an explanation for the previously characterized sequence dependence of GpA dimerization and demonstrates that van der Waals interactions alone can mediate stable and specific associations between transmembrane helices. A transmembrane helix dimer: structure and implications.,MacKenzie KR, Prestegard JH, Engelman DM Science. 1997 Apr 4;276(5309):131-3. PMID:9082985[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|