1bl1

From Proteopedia

Jump to: navigation, search

PTH RECEPTOR N-TERMINUS FRAGMENT, NMR, 1 STRUCTURE

Structural highlights

1bl1 is a 1 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

PTH1R_HUMAN Blomstrand lethal chondrodysplasia;Dental ankylosis;Eiken syndrome;Metaphyseal chondrodysplasia, Jansen type;Enchondromatosis. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease may be caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry.

Function

PTH1R_HUMAN This is a receptor for parathyroid hormone and for parathyroid hormone-related peptide. The activity of this receptor is mediated by G proteins which activate adenylyl cyclase and also a phosphatidylinositol-calcium second messenger system.[1] [2]

Publication Abstract from PubMed

A 31 amino acid fragment of the extracellular N-terminus of the human G-protein coupled receptor for parathyroid hormone (PTH1R) has been structurally characterized by NMR and molecular dynamics simulations. The fragment PTH1R[168-198] includes residues 173-189, shown by photoaffinity cross-linking to be a contact domain with position 13 of parathyroid hormone (PTH). The structure of PTH1R[168-198], determined in a micellar solution of dodecylphosphocholine to mimic the membrane environment, consists of three alpha-helices, separated by a well-defined turn and a flexible region. The topological orientation of PTH1R[168-198] was determined from nitroxide-radical induced relaxation of NMR signals utilizing 5- and 16-doxylstearic acid. The C-terminal helix (residues 190-196), consisting of seven amino acids of the first transmembrane domain, is very hydrophobic and embedded in the lipid core. This helix is preceded by a well-defined turn, forming an approximate 90 degrees bend, placing the other helices (residues 169-176 and 180-189), both of which are amphipathic, on the surface of the micelle. In this orientation, many hydrophilic residues of the receptor, including Glu177, Arg179, Arg181, Glu182, Asp185, and Arg186, are projecting toward the solvent available to form complementary Coulombic interactions with the polar residues of the principal binding domain of the ligand (e.g., Arg25, Lys26, Lys27, Asp30, and His32). Given that the binding domain of PTH adopts an amphipathic alpha-helix which lies on the membrane, we visualize ligand binding as a two stage process involving a nonspecific hydrophobic interaction of amphipathic helices with the membrane, followed by two-dimensional diffusion leading to highly specific, ligand-receptor interaction.

Binding domain of human parathyroid hormone receptor: from conformation to function.,Pellegrini M, Bisello A, Rosenblatt M, Chorev M, Mierke DF Biochemistry. 1998 Sep 15;37(37):12737-43. PMID:9737850[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
No citations found

References

  1. Johnston CA, Kimple AJ, Giguere PM, Siderovski DP. Structure of the parathyroid hormone receptor C terminus bound to the G-protein dimer Gbeta1gamma2. Structure. 2008 Jul;16(7):1086-94. PMID:18611381 doi:http://dx.doi.org/10.1016/j.str.2008.04.010
  2. Pioszak AA, Harikumar KG, Parker NR, Miller LJ, Xu HE. Dimeric arrangement of the parathyroid hormone receptor and a structural mechanism for ligand-induced dissociation. J Biol Chem. 2010 Apr 16;285(16):12435-44. Epub 2010 Feb 19. PMID:20172855 doi:10.1074/jbc.M109.093138
  3. Pellegrini M, Bisello A, Rosenblatt M, Chorev M, Mierke DF. Binding domain of human parathyroid hormone receptor: from conformation to function. Biochemistry. 1998 Sep 15;37(37):12737-43. PMID:9737850 doi:http://dx.doi.org/10.1021/bi981265h

Contents


PDB ID 1bl1

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools