1fi9
From Proteopedia
SOLUTION STRUCTURE OF THE IMIDAZOLE COMPLEX OF CYTOCHROME C
Structural highlights
FunctionCYC_HORSE Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain. Plays a role in apoptosis. Suppression of the anti-apoptotic members or activation of the pro-apoptotic members of the Bcl-2 family leads to altered mitochondrial membrane permeability resulting in release of cytochrome c into the cytosol. Binding of cytochrome c to Apaf-1 triggers the activation of caspase-9, which then accelerates apoptosis by activating other caspases (By similarity). Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAlthough imidazole ligand binding to cytochrome c is not directly related to its physiological function, it has the potential to provide valuable information on the molecular and electronic structure of the protein. The solution structure of the imidazole adduct of oxidized horse heart cytochrome c (Im-cyt c) has been determined through 2D NMR spectroscopy. The Im-cyt c, 8 mM in 1.2 M imidazole solution at pH 5.7 and 313 K, provided altogether 2,542 NOEs (1,901 meaningful NOEs) and 194 pseudocontact shifts. The 35 conformers of the family show the RMSD values to the average structure of 0.063+/-0.007 nm for the backbone and 0.107+/-0.007 nm for all heavy atoms, respectively. The characterization of Im-cyt c is discussed in detail both in terms of structure and electronic properties. The replacement of the axial ligand Met80 with the exogenous imidazole ligand induces significant conformation changes in both backbone and side chains of the residues located in the distal axial ligand regions. The imidazole ligand binds essentially parallel to the imidazole of the proximal histidine, the two planes forming an angle of 8+/-7 degrees. The electron delocalization on the heme moiety and the magnetic susceptibility tensor are consistent with these structural features. Effects of extrinsic imidazole ligation on the molecular and electronic structure of cytochrome c.,Banci L, Bertini I, Liu G, Lu J, Reddig T, Tang W, Wu Y, Yao Y, Zhu D J Biol Inorg Chem. 2001 Jun;6(5-6):628-37. PMID:11472026[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Equus caballus | Large Structures | Banci L | Bertini I | Liu G | Lu J | Reddig T | Tang W | Wu Y | Zhu D