Structural highlights
Publication Abstract from PubMed
The proposed role of the mammalian cell entry protein 1A (Mce1A) of Mycobacterium tuberculosis is to facilitate invasion of host cells. The structure of Mce1A was modelled on the basis of the crystal structure of Colicin N of Escherichia coli by fold prediction and threading. Mce1A, as the model predicts, is an alpha/beta protein consisting of two major (alpha and beta) domains, connected by a long alpha helix. The model further revealed that the protein contains 12 helices, 9 strands, and 1 turn. The final model of Mce1A was verified through the program VERIFY 3D and more than 90% of the residues were in the favourable region. A mouse monoclonal antibody, TB1-5 76C, is directed to an epitope within a 60-mer peptide that has been shown to promote uptake of bacteria in mammalian cells. We show here that the epitope could be narrowed down to a core of 4 amino acids, TPKD. Upstream flanking residues, KRR also contributed to binding. Mce2A does not promote uptake in mammalian cells and sequence comparison of Mce1A and Mce2A indicates that the epitope mediates uptake. The epitope was located at the surface of the Mce1A model at the distal beta strand-loop region in the beta domain. The localization of this epitope in the model confirms its potential role in promoting uptake of M. tuberculosis in host cells.
Predicted molecular structure of the mammalian cell entry protein Mce1A of Mycobacterium tuberculosis.,Das AK, Mitra D, Harboe M, Nandi B, Harkness RE, Das D, Wiker HG Biochem Biophys Res Commun. 2003 Mar 14;302(3):442-7. PMID:12615052[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Das AK, Mitra D, Harboe M, Nandi B, Harkness RE, Das D, Wiker HG. Predicted molecular structure of the mammalian cell entry protein Mce1A of Mycobacterium tuberculosis. Biochem Biophys Res Commun. 2003 Mar 14;302(3):442-7. PMID:12615052