Structural highlights
Publication Abstract from PubMed
The description of the nonbonded contact terms used in simulated annealing refinement can have a major impact on nucleic acid structures generated from NMR data. Using complete dipolar coupling cross-validation, we demonstrate that substantial improvements in coordinate accuracy of NMR structures of RNA can be obtained by making use of two conformational database potentials of mean force: a nucleic acid torsion angle database potential consisting of various multidimensional torsion angle correlations; and an RNA specific base-base positioning potential that provides a simple geometric, statistically based, description of sequential and nonsequential base-base interactions. The former is based on 416 nucleic acid crystal structures solved at a resolution of </=2 A and an R-factor </=25%; the latter is based on 131 RNA crystal structures solved at a resolution of </=3 A and an R-factor of </=25%, and includes both the large and small subunits of the ribosome. The application of these two database potentials is illustrated for the structure refinement of an RNA aptamer/theophylline complex for which extensive NOE and residual dipolar coupling data have been measured in solution.
Improving the accuracy of NMR structures of RNA by means of conformational database potentials of mean force as assessed by complete dipolar coupling cross-validation.,Clore GM, Kuszewski J J Am Chem Soc. 2003 Feb 12;125(6):1518-25. PMID:12568611[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Clore GM, Kuszewski J. Improving the accuracy of NMR structures of RNA by means of conformational database potentials of mean force as assessed by complete dipolar coupling cross-validation. J Am Chem Soc. 2003 Feb 12;125(6):1518-25. PMID:12568611 doi:10.1021/ja028383j