1p6s
From Proteopedia
Solution Structure of the Pleckstrin Homology Domain of Human Protein Kinase B beta (Pkb/Akt)
Structural highlights
DiseaseAKT2_HUMAN Note=Defects in AKT2 are a cause of susceptibility to breast cancer (BC). AKT2 promotes metastasis of tumor cells without affecting the latency of tumor development. With AKT3, plays also a pivotal role in the biology of glioblastoma. Defects in AKT2 are a cause of non-insulin-dependent diabetes mellitus (NIDDM) [MIM:125853; also known as diabetes mellitus type 2 or maturity-onset diabetes. NIDDM is characterized by an autosomal dominant mode of inheritance, onset during adulthood and insulin resistance.[1] [2] Defects in AKT2 are a cause of hypoinsulinemic hypoglycemia with hemihypertrophy (HIHGHH) [MIM:240900. HIHGHH is a disorder characterized by hypoglycemia, low insulin levels, low serum levels of ketone bodies and branched-chain amino acids, left-sided hemihypertrophy, neonatal macrosomia, reduced consciousness and hypoglycemic seizures.[3] FunctionAKT2_HUMAN AKT2 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface. Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling. Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport. AKT regulates also the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity. Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven. AKT regulates also cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating mTORC1 signaling and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1. AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization. In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319'. FOXO3 and FOXO4 are phosphorylated on equivalent sites. AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1. AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis. Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis. Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity. The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth. AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation. Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I). AKT mediates the antiapoptotic effects of IGF-I. Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. May be involved in the regulation of the placental development.[4] One of the few specific substrates of AKT2 identified recently is PITX2. Phosphorylation of PITX2 impairs its association with the CCND1 mRNA-stabilizing complex thus shortening the half-life of CCND1. AKT2 seems also to be the principal isoform responsible of the regulation of glucose uptake. Phosphorylates C2CD5 on 'Ser-197' during insulin-stimulated adipocytes. AKT2 is also specifically involved in skeletal muscle differentiation. Down-regulation by RNA interference reduces the expression of the phosphorylated form of BAD, resulting in the induction of caspase-dependent apoptosis. Phosphorylates CLK2 on 'Thr-343'.[5] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe programmed cell death occurs as part of normal mammalian development. The induction of developmental cell death is a highly regulated process and can be suppressed by a variety of extracellular stimuli. Recently, the ability of trophic factors to promote survival have been attributed, at least in part, to the phosphatidylinositide 3'-OH kinase (PI3K)/Protein Kinase B (PKB, also named Akt) cascade. Several targets of the PI3K/PKB signaling pathway have been identified that may underlie the ability of this regulatory cascade to promote cell survival. PKB possesses a N-terminal Pleckstrin Homology (PH) domain that binds specifically and with high affinity to PtIns(3,4,5)P(3) and PtIns(3,4)P(2), the PI3K second messengers. PKB is then recruited to the plasma membrane by virtue of its interaction with 3'-OH phosphatidylinositides and activated. Recent evidence indicates that PKB is active in various types of human cancer; constitutive PKB signaling activation is believed to promote proliferation and increased cell survival, thereby contributing to cancer progression. Thus, it has been shown that induction of PKB activity is augmented by the TCL1/MTCP1 oncoproteins through a physical association requiring the PKB PH domain. Here we present the three-dimensional solution structure of the PH domain of the human protein PKB (isoform beta). PKBbeta-PH is an electrostatically polarized molecule that adopts the same fold and topology as other PH-domains, consisting of a beta-sandwich of seven strands capped on one top by an alpha-helix. The opposite face presents three variable loops that appear poorly defined in the NMR structure. Measurements of (15)N spin relaxation times and heteronuclear (15)N[(1)H]NOEs showed that this poor definition is due to intrinsic flexibility, involving complex motions on different time scales. Chemical shift mapping studies correctly defined the binding site of Ins(1,3,4,5)P(4) (the head group of PtIns(3,4,5)P(3)), as was previously proposed from a crystallographic study. More interestingly, these studies allowed us to define a putative alternative low-affinity binding site for Ins(1,4,5)P(3). The binding of this sugar to PKBbeta-PH might also involve non-specific association that could explain the stabilization of the protein in solution in the presence of Ins(1,4,5)P(3). Solution structure and backbone dynamics of the pleckstrin homology domain of the human protein kinase B (PKB/Akt). Interaction with inositol phosphates.,Auguin D, Barthe P, Auge-Senegas MT, Stern MH, Noguchi M, Roumestand C J Biomol NMR. 2004 Feb;28(2):137-55. PMID:14755158[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|