1xbl

From Proteopedia

Jump to: navigation, search

NMR STRUCTURE OF THE J-DOMAIN (RESIDUES 2-76) IN THE ESCHERICHIA COLI N-TERMINAL FRAGMENT (RESIDUES 2-108) OF THE MOLECULAR CHAPERONE DNAJ, 20 STRUCTURES

Structural highlights

1xbl is a 1 chain structure with sequence from Escherichia coli. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

DNAJ_ECOLI Interacts with DnaK and GrpE to disassemble a protein complex at the origins of replication of phage lambda and several plasmids. Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, DnaK and GrpE are required for fully efficient folding.[1] [2] [3] [4]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The recombinant N-terminal 107-amino acid polypeptide fragment 2-108 of the DnaJ molecular chaperone of Escherichia coli, which contains the J-domain (residues 2 to 76) and the Gly/Phe-rich region (residues 77 to 108), was uniformly labeled with nitrogen-15 and carbon-13. The complete NMR solution structure of the J-domain was determined with the program DIANA on the basis of 682 nuclear Overhauser enhancement (NOE) upper distance limits and 180 dihedral angle constraints. It contains three well-defined helices comprising residues 6 to 10, 18 to 32 and 41 to 57, and a fourth helix, consisting of residues 61 to 68, which is well defined as a regular secondary structure but for which the location relative to the remainder of the molecule is not precisely determined. The helices II and III form an antiparallel helical coiled-coil. Helix I is approximately parallel to the plane defined by the helices II and III and runs from the carboxy-terminal end of the helix III to the center of helix II. Helix IV is positioned near the carboxy-terminal end of helix III and is on the same side of the coiled coil as helix I, but it is oriented approximately perpendicular to the plane of the helices II and III. This novel alpha-protein topology leads to formation of a hydrophobic core involving side-chains of all four helices. A strong correlation is seen between the extent of sequence-conservation of hydrophobic residues in the family of J-domain homologues, and the structural organization of the hydrophobic core in these proteins. The residues which have key roles for the specificity of the interaction of DnaJ-like proteins with their corresponding Hsp70 counterparts are located on the outer surfaces of the helices II and III, and in the loop connecting these two helices. Measurements of backbone amide proton exchange rates, 15N spin relaxation times and heteronuclear 15N {1H} NOEs provided additional insights into local conformational equilibria and internal rate processes in DnaJ(2-108). In the Gly/Phe-rich region, which is poorly ordered in the NMR solution structure and does not form a globular core, the polypeptide segment 90 to 103 differs from the segments 77 to 89 and 104 to 108 by reduced local flexibility. Considering that this same segment shows sequence conservation with corresponding segments in the Gly/Phe-rich regions of other DnaJ-like proteins, its reduced flexibility may be directly linked to the formation of the ternary DnaJ-DnaK-polypeptide complex.

NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone.,Pellecchia M, Szyperski T, Wall D, Georgopoulos C, Wuthrich K J Mol Biol. 1996 Jul 12;260(2):236-50. PMID:8764403[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
23 reviews cite this structure
Bukau et al. (1998)
No citations found

See Also

References

  1. Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2874-8. PMID:1826368
  2. Zietkiewicz S, Krzewska J, Liberek K. Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J Biol Chem. 2004 Oct 22;279(43):44376-83. Epub 2004 Aug 9. PMID:15302880 doi:http://dx.doi.org/10.1074/jbc.M402405200
  3. Siegenthaler RK, Grimshaw JP, Christen P. Immediate response of the DnaK molecular chaperone system to heat shock. FEBS Lett. 2004 Mar 26;562(1-3):105-10. PMID:15044009 doi:http://dx.doi.org/10.1016/S0014-5793(04)00190-5
  4. Zzaman S, Reddy JM, Bastia D. The DnaK-DnaJ-GrpE chaperone system activates inert wild type pi initiator protein of R6K into a form active in replication initiation. J Biol Chem. 2004 Dec 3;279(49):50886-94. Epub 2004 Oct 13. PMID:15485812 doi:http://dx.doi.org/M407531200
  5. Pellecchia M, Szyperski T, Wall D, Georgopoulos C, Wuthrich K. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. J Mol Biol. 1996 Jul 12;260(2):236-50. PMID:8764403 doi:10.1006/jmbi.1996.0395

Contents


PDB ID 1xbl

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools