1zwb
From Proteopedia
STRUCTURE OF HUMAN PARATHYROID HORMONE FRAGMENT 2-37, NMR, 10 STRUCTURES
Structural highlights
DiseasePTHY_HUMAN Defects in PTH are a cause of familial isolated hypoparathyroidism (FIH) [MIM:146200; also called autosomal dominant hypoparathyroidism or autosomal dominant hypocalcemia. FIH is characterized by hypocalcemia and hyperphosphatemia due to inadequate secretion of parathyroid hormone. Symptoms are seizures, tetany and cramps. FIH exist both as autosomal dominant and recessive forms of hypoparathyroidism.[1] [2] [3] FunctionPTHY_HUMAN PTH elevates calcium level by dissolving the salts in bone and preventing their renal excretion. Stimulates [1-14C]-2-deoxy-D-glucose (2DG) transport and glycogen synthesis in osteoblastic cells.[4] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHuman parathyroid hormone (hPTH) is involved in the regulation of the calcium level in blood. This hormone function is located in the NH2-terminal 34 amino acids of the 84-amino acid peptide hormone and is transduced via the adenylate cyclase and the phosphatidylinositol signaling pathways. It is well known that truncation of the two NH2-terminal amino acids of the hormone leads to complete loss of in vivo normocalcemic function. To correlate loss of calcium level regulatory activity after stepwise NH2-terminal truncation and solution structure, we studied the conformations of fragments hPTH-(2-37), hPTH-(3-37), and hPTH-(4-37) in comparison to hPTH-(1-37) in aqueous buffer solution under near physiological conditions by circular dichroism spectroscopy, two-dimensional nuclear magnetic resonance spectroscopy, and restrained molecular dynamics calculations. All peptides show helical structures and hydrophobic interactions between Leu-15 and Trp-23 that lead to a defined loop region from His-14 to Ser-17. A COOH-terminal helix from Met-18 to at least Leu-28 was found for all peptides. The helical structure in the NH2-terminal part of the peptides was lost in parallel with the NH2-terminal truncation and can be correlated with the loss of calcium regulatory activity. Structure-activity relation of NH2-terminal human parathyroid hormone fragments.,Marx UC, Adermann K, Bayer P, Meyer M, Forssmann WG, Rosch P J Biol Chem. 1998 Feb 20;273(8):4308-16. PMID:9468478[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|