2cku
From Proteopedia
Solution structure of 2F13F1 from human fibronectin
Structural highlights
DiseaseFINC_HUMAN Defects in FN1 are the cause of glomerulopathy with fibronectin deposits type 2 (GFND2) [MIM:601894; also known as familial glomerular nephritis with fibronectin deposits or fibronectin glomerulopathy. GFND is a genetically heterogeneous autosomal dominant disorder characterized clinically by proteinuria, microscopic hematuria, and hypertension that leads to end-stage renal failure in the second to fifth decade of life.[1] FunctionFINC_HUMAN Fibronectins bind cell surfaces and various compounds including collagen, fibrin, heparin, DNA, and actin. Fibronectins are involved in cell adhesion, cell motility, opsonization, wound healing, and maintenance of cell shape.[2] [3] [4] [5] Anastellin binds fibronectin and induces fibril formation. This fibronectin polymer, named superfibronectin, exhibits enhanced adhesive properties. Both anastellin and superfibronectin inhibit tumor growth, angiogenesis and metastasis. Anastellin activates p38 MAPK and inhibits lysophospholipid signaling.[6] [7] [8] [9] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAn important goal of structural studies of modular proteins is to determine the inter-module orientation, which often influences biological function. The N-terminal domain of human fibronectin (Fn) is composed of a string of five type 1 modules (F1). Despite their small size, to date F1 modules have proved intractable to X-ray structure solution, although there are several NMR structures available. Here, we present the first structures (two X-ray models and an NMR-derived model) of the (2)F1(3)F1 module pair, which forms part of the binding site for Fn-binding proteins from pathogenic bacteria. The crystallographic structure determination was aided by the novel technique of UV radiation damage-induced phasing. The individual module structures are very similar in all three models. In the NMR structure and one of the X-ray structures, a similar but smaller interdomain interface than that observed previously for (4)F1(5)F1 is seen. The other X-ray structure has a different interdomain orientation. This work underlines the benefits of combining X-ray and NMR data in the studies of multi-domain proteins. The solution and crystal structures of a module pair from the Staphylococcus aureus-binding site of human fibronectin--a tale with a twist.,Rudino-Pinera E, Ravelli RB, Sheldrick GM, Nanao MH, Korostelev VV, Werner JM, Schwarz-Linek U, Potts JR, Garman EF J Mol Biol. 2007 May 4;368(3):833-44. Epub 2007 Feb 22. PMID:17368672[10] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|