First time at Proteopedia? Click on the green links: they change the 3D image. Click and drag the molecules. Proteopedia is a 3D, interactive encyclopedia of proteins, RNA, DNA and other molecules. With a free user account, you can edit pages in Proteopedia. Visit the Main Page to learn more.


From Proteopedia

Jump to: navigation, search
2jnw, 10 NMR models ()
Gene: ERCC1 (Homo sapiens)
Related: 2a1i
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Solution structure of a ERCC1-XPA heterodimer

Publication Abstract from PubMed

The nucleotide excision repair (NER) pathway corrects DNA damage caused by sunlight, environmental mutagens and certain antitumor agents. This multistep DNA repair reaction operates by the sequential assembly of protein factors at sites of DNA damage. The efficient recognition of DNA damage and its repair are orchestrated by specific protein-protein and protein-DNA interactions within NER complexes. We have investigated an essential protein-protein interaction of the NER pathway, the binding of the XPA protein to the ERCC1 subunit of the repair endonuclease ERCC1-XPF. The structure of ERCC1 in complex with an XPA peptide shows that only a small region of XPA interacts with ERCC1 to form a stable complex exhibiting submicromolar binding affinity. However, this XPA peptide is a potent inhibitor of NER activity in a cell-free assay, blocking the excision of a cisplatin adduct from DNA. The structure of the peptide inhibitor bound to its target site reveals a binding interface that is amenable to the development of small molecule peptidomimetics that could be used to modulate NER repair activities in vivo.

Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA., Tsodikov OV, Ivanov D, Orelli B, Staresincic L, Shoshani I, Oberman R, Scharer OD, Wagner G, Ellenberger T, EMBO J. 2007 Nov 14;26(22):4768-76. Epub 2007 Oct 18. PMID:17948053

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.


[ERCC1_HUMAN] Defects in ERCC1 are the cause of cerebro-oculo-facio-skeletal syndrome type 4 (COFS4) [MIM:610758]. COFS is a degenerative autosomal recessive disorder of prenatal onset affecting the brain, eye and spinal cord. After birth, it leads to brain atrophy, hypoplasia of the corpus callosum, hypotonia, cataracts, microcornea, optic atrophy, progressive joint contractures and growth failure. Facial dysmorphism is a constant feature. Abnormalities of the skull, eyes, limbs, heart and kidney also occur.[1] [XPA_HUMAN] Defects in XPA are a cause of xeroderma pigmentosum complementation group A (XP-A) [MIM:278700]; also known as xeroderma pigmentosum type 1 (XP1). XP-A is a rare human autosomal recessive disease characterized by solar sensitivity, high predisposition for developing cancers on areas exposed to sunlight and, in some cases, neurological abnormalities. Group A patients show the most severe skin symptoms and progressive neurological disorders.[2][3][4]


[ERCC1_HUMAN] Structure-specific DNA repair endonuclease responsible for the 5'-incision during DNA repair. [XPA_HUMAN] Involved in DNA excision repair. Initiates repair by binding to damaged sites with various affinities, depending on the photoproduct and the transcriptional state of the region. Required for UV-induced CHEK1 phosphorylation and the recruitment of CEP164 to cyclobutane pyrimidine dimmers (CPD), sites of DNA damage after UV irradiation.[5]

About this Structure

2jnw is a 2 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA.


  • Tsodikov OV, Ivanov D, Orelli B, Staresincic L, Shoshani I, Oberman R, Scharer OD, Wagner G, Ellenberger T. Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA. EMBO J. 2007 Nov 14;26(22):4768-76. Epub 2007 Oct 18. PMID:17948053
  1. Jaspers NG, Raams A, Silengo MC, Wijgers N, Niedernhofer LJ, Robinson AR, Giglia-Mari G, Hoogstraten D, Kleijer WJ, Hoeijmakers JH, Vermeulen W. First reported patient with human ERCC1 deficiency has cerebro-oculo-facio-skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure. Am J Hum Genet. 2007 Mar;80(3):457-66. Epub 2007 Jan 29. PMID:17273966 doi:S0002-9297(07)60094-9
  2. Satokata I, Tanaka K, Okada Y. Molecular basis of group A xeroderma pigmentosum: a missense mutation and two deletions located in a zinc finger consensus sequence of the XPAC gene. Hum Genet. 1992 Mar;88(6):603-7. PMID:1339397
  3. Satokata I, Tanaka K, Yuba S, Okada Y. Identification of splicing mutations of the last nucleotides of exons, a nonsense mutation, and a missense mutation of the XPAC gene as causes of group A xeroderma pigmentosum. Mutat Res. 1992 Mar;273(2):203-12. PMID:1372103
  4. States JC, McDuffie ER, Myrand SP, McDowell M, Cleaver JE. Distribution of mutations in the human xeroderma pigmentosum group A gene and their relationships to the functional regions of the DNA damage recognition protein. Hum Mutat. 1998;12(2):103-13. PMID:9671271 doi:<103::AID-HUMU5>3.0.CO;2-6 10.1002/(SICI)1098-1004(1998)12:2<103::AID-HUMU5>3.0.CO;2-6
  5. Pan YR, Lee EY. UV-dependent interaction between Cep164 and XPA mediates localization of Cep164 at sites of DNA damage and UV sensitivity. Cell Cycle. 2009 Feb 15;8(4):655-64. Epub 2009 Feb 14. PMID:19197159

Proteopedia Page Contributors and Editors (what is this?)


Personal tools