| Structural highlights
Function
POLG_FMDVO The leader protease autocatalytically cleaves itself from the polyprotein at the L/VP0 junction. It also cleaves the host translation initiation factor EIF4G1 and EIF4G3, in order to shut down the capped cellular mRNA transcription.[1] [2] [3] [4] Capsid proteins VP1, VP2, VP3 and VP4 form a closed capsid enclosing the viral positive strand RNA genome. VP4 lies on the inner surface of the protein shell formed by VP1, VP2 and VP3. All the three latter proteins contain a beta-sheet structure called beta-barrel jelly roll. Together they form an icosahedral capsid (T=3) composed of 60 copies of each VP1, VP2, and VP3, with a diameter of approximately 300 Angstroms. VP1 is situated at the 12 fivefold axes, whereas VP2 and VP3 are located at the quasi-sixfold axes. The capsid interacts with host heparan sulfate and various integrins (alphavbeta6, alphavbeta1, alphavbeta3, alpha5beta1, alphavbeta8) to provide virion attachment to target Attachment via host integrins induces virion internalization predominantly through clathrin-mediated endocytosis. In strains adapted to cell culture, attachment to heparan sulfate can also be used and induces virion internalization through clathrin- and caveolin-independent endocytosis.[5] [6] [7] [8] Protein VP0: VP0 precursor is a component of immature procapsids (By similarity).[9] [10] [11] [12] Protein 2B: Affects membrane integrity and cause an increase in membrane permeability (By similarity).[13] [14] [15] [16] Protein 2C: Associates with and induces structural rearrangements of intracellular membranes. It displays RNA-binding, nucleotide binding and NTPase activities (By similarity).[17] [18] [19] [20] Protein 3A, via its hydrophobic domain, serves as membrane anchor (By similarity).[21] [22] [23] [24] Protein 3B-1, 3B-2 and 3B-3 are covalently linked to the 5'-end of both the positive-strand and negative-strand genomic RNAs. They acts as a genome-linked replication primer (By similarity).[25] [26] [27] [28] Protease 3C: cysteine protease that generates mature viral proteins from the precursor polyprotein. In addition to its proteolytic activity, it binds to viral RNA, and thus influences viral genome replication. RNA and substrate bind cooperatively to the protease (By similarity).[29] [30] [31] [32] RNA-directed RNA polymerase 3D-POL replicates genomic and antigenomic RNA by recognizing replications specific signals (By similarity).[33] [34] [35] [36]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The leader protease (Lbpro) of foot-and-mouth disease virus frees itself during translation from the viral polyprotein by cleavage between its own C terminus and the N terminus of the subsequent protein, VP4. Lbpro also specifically cleaves the host proteins eukaryotic initiation factor (eIF) 4GI and 4GII, thus disabling host cell protein synthesis. We used NMR to study full-length Lbpro as well as a shortened species lacking six C-terminal amino acid residues (sLbpro) to examine the mechanism of self-processing, the quaternary structure and the substrate specificity. Both Lbpro forms have the same structure in solution as in the crystal. In the solution structure of sLbpro, the 12 residue C-terminal extension was flexible and disordered. In contrast, the 18 residue C-terminal extension of full-length Lbpro was bound by the substrate-binding site of a neighbouring molecule, resulting in the formation of a stable dimer in solution. The Lbpro dimer could not be dissociated by increasing the ionic strength or by dilution. Furthermore, titration with model peptides mimicking the substrates destabilised the dimer interface without dissociating the dimer. The peptides were, however, bound by sLbpro in the canonical substrate binding site. Peptide binding gave rise to chemical shifts of residues around the sLbpro substrate binding site. Shifts of Asn146 and Glu147 indicated that these residues might form the enzyme's S1' site and interact with the P1' arginine residue of the eIF4GI cleavage site. Furthermore, differences in substrate specificity between sLbpro and Lbpro observed with an in vitro translated protein indicate some involvement of the C terminus in substrate recognition.
Investigating the substrate specificity and oligomerisation of the leader protease of foot and mouth disease virus using NMR.,Cencic R, Mayer C, Juliano MA, Juliano L, Konrat R, Kontaxis G, Skern T J Mol Biol. 2007 Nov 2;373(4):1071-87. Epub 2007 Sep 1. PMID:17897674[37]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Medina M, Domingo E, Brangwyn JK, Belsham GJ. The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology. 1993 May;194(1):355-9. PMID:8386879 doi:http://dx.doi.org/S0042-6822(83)71267-5
- ↑ Glaser W, Skern T. Extremely efficient cleavage of eIF4G by picornaviral proteinases L and 2A in vitro. FEBS Lett. 2000 Sep 1;480(2-3):151-5. PMID:11034318
- ↑ Gradi A, Foeger N, Strong R, Svitkin YV, Sonenberg N, Skern T, Belsham GJ. Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. J Virol. 2004 Apr;78(7):3271-8. PMID:15016848
- ↑ O'Donnell V, Larocco M, Baxt B. Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis. J Virol. 2008 Sep;82(18):9075-85. doi: 10.1128/JVI.00732-08. Epub 2008 Jul 9. PMID:18614639 doi:http://dx.doi.org/10.1128/JVI.00732-08
- ↑ Medina M, Domingo E, Brangwyn JK, Belsham GJ. The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology. 1993 May;194(1):355-9. PMID:8386879 doi:http://dx.doi.org/S0042-6822(83)71267-5
- ↑ Glaser W, Skern T. Extremely efficient cleavage of eIF4G by picornaviral proteinases L and 2A in vitro. FEBS Lett. 2000 Sep 1;480(2-3):151-5. PMID:11034318
- ↑ Gradi A, Foeger N, Strong R, Svitkin YV, Sonenberg N, Skern T, Belsham GJ. Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. J Virol. 2004 Apr;78(7):3271-8. PMID:15016848
- ↑ O'Donnell V, Larocco M, Baxt B. Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis. J Virol. 2008 Sep;82(18):9075-85. doi: 10.1128/JVI.00732-08. Epub 2008 Jul 9. PMID:18614639 doi:http://dx.doi.org/10.1128/JVI.00732-08
- ↑ Medina M, Domingo E, Brangwyn JK, Belsham GJ. The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology. 1993 May;194(1):355-9. PMID:8386879 doi:http://dx.doi.org/S0042-6822(83)71267-5
- ↑ Glaser W, Skern T. Extremely efficient cleavage of eIF4G by picornaviral proteinases L and 2A in vitro. FEBS Lett. 2000 Sep 1;480(2-3):151-5. PMID:11034318
- ↑ Gradi A, Foeger N, Strong R, Svitkin YV, Sonenberg N, Skern T, Belsham GJ. Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. J Virol. 2004 Apr;78(7):3271-8. PMID:15016848
- ↑ O'Donnell V, Larocco M, Baxt B. Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis. J Virol. 2008 Sep;82(18):9075-85. doi: 10.1128/JVI.00732-08. Epub 2008 Jul 9. PMID:18614639 doi:http://dx.doi.org/10.1128/JVI.00732-08
- ↑ Medina M, Domingo E, Brangwyn JK, Belsham GJ. The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology. 1993 May;194(1):355-9. PMID:8386879 doi:http://dx.doi.org/S0042-6822(83)71267-5
- ↑ Glaser W, Skern T. Extremely efficient cleavage of eIF4G by picornaviral proteinases L and 2A in vitro. FEBS Lett. 2000 Sep 1;480(2-3):151-5. PMID:11034318
- ↑ Gradi A, Foeger N, Strong R, Svitkin YV, Sonenberg N, Skern T, Belsham GJ. Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. J Virol. 2004 Apr;78(7):3271-8. PMID:15016848
- ↑ O'Donnell V, Larocco M, Baxt B. Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis. J Virol. 2008 Sep;82(18):9075-85. doi: 10.1128/JVI.00732-08. Epub 2008 Jul 9. PMID:18614639 doi:http://dx.doi.org/10.1128/JVI.00732-08
- ↑ Medina M, Domingo E, Brangwyn JK, Belsham GJ. The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology. 1993 May;194(1):355-9. PMID:8386879 doi:http://dx.doi.org/S0042-6822(83)71267-5
- ↑ Glaser W, Skern T. Extremely efficient cleavage of eIF4G by picornaviral proteinases L and 2A in vitro. FEBS Lett. 2000 Sep 1;480(2-3):151-5. PMID:11034318
- ↑ Gradi A, Foeger N, Strong R, Svitkin YV, Sonenberg N, Skern T, Belsham GJ. Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. J Virol. 2004 Apr;78(7):3271-8. PMID:15016848
- ↑ O'Donnell V, Larocco M, Baxt B. Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis. J Virol. 2008 Sep;82(18):9075-85. doi: 10.1128/JVI.00732-08. Epub 2008 Jul 9. PMID:18614639 doi:http://dx.doi.org/10.1128/JVI.00732-08
- ↑ Medina M, Domingo E, Brangwyn JK, Belsham GJ. The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology. 1993 May;194(1):355-9. PMID:8386879 doi:http://dx.doi.org/S0042-6822(83)71267-5
- ↑ Glaser W, Skern T. Extremely efficient cleavage of eIF4G by picornaviral proteinases L and 2A in vitro. FEBS Lett. 2000 Sep 1;480(2-3):151-5. PMID:11034318
- ↑ Gradi A, Foeger N, Strong R, Svitkin YV, Sonenberg N, Skern T, Belsham GJ. Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. J Virol. 2004 Apr;78(7):3271-8. PMID:15016848
- ↑ O'Donnell V, Larocco M, Baxt B. Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis. J Virol. 2008 Sep;82(18):9075-85. doi: 10.1128/JVI.00732-08. Epub 2008 Jul 9. PMID:18614639 doi:http://dx.doi.org/10.1128/JVI.00732-08
- ↑ Medina M, Domingo E, Brangwyn JK, Belsham GJ. The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology. 1993 May;194(1):355-9. PMID:8386879 doi:http://dx.doi.org/S0042-6822(83)71267-5
- ↑ Glaser W, Skern T. Extremely efficient cleavage of eIF4G by picornaviral proteinases L and 2A in vitro. FEBS Lett. 2000 Sep 1;480(2-3):151-5. PMID:11034318
- ↑ Gradi A, Foeger N, Strong R, Svitkin YV, Sonenberg N, Skern T, Belsham GJ. Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. J Virol. 2004 Apr;78(7):3271-8. PMID:15016848
- ↑ O'Donnell V, Larocco M, Baxt B. Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis. J Virol. 2008 Sep;82(18):9075-85. doi: 10.1128/JVI.00732-08. Epub 2008 Jul 9. PMID:18614639 doi:http://dx.doi.org/10.1128/JVI.00732-08
- ↑ Medina M, Domingo E, Brangwyn JK, Belsham GJ. The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology. 1993 May;194(1):355-9. PMID:8386879 doi:http://dx.doi.org/S0042-6822(83)71267-5
- ↑ Glaser W, Skern T. Extremely efficient cleavage of eIF4G by picornaviral proteinases L and 2A in vitro. FEBS Lett. 2000 Sep 1;480(2-3):151-5. PMID:11034318
- ↑ Gradi A, Foeger N, Strong R, Svitkin YV, Sonenberg N, Skern T, Belsham GJ. Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. J Virol. 2004 Apr;78(7):3271-8. PMID:15016848
- ↑ O'Donnell V, Larocco M, Baxt B. Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis. J Virol. 2008 Sep;82(18):9075-85. doi: 10.1128/JVI.00732-08. Epub 2008 Jul 9. PMID:18614639 doi:http://dx.doi.org/10.1128/JVI.00732-08
- ↑ Medina M, Domingo E, Brangwyn JK, Belsham GJ. The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology. 1993 May;194(1):355-9. PMID:8386879 doi:http://dx.doi.org/S0042-6822(83)71267-5
- ↑ Glaser W, Skern T. Extremely efficient cleavage of eIF4G by picornaviral proteinases L and 2A in vitro. FEBS Lett. 2000 Sep 1;480(2-3):151-5. PMID:11034318
- ↑ Gradi A, Foeger N, Strong R, Svitkin YV, Sonenberg N, Skern T, Belsham GJ. Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. J Virol. 2004 Apr;78(7):3271-8. PMID:15016848
- ↑ O'Donnell V, Larocco M, Baxt B. Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis. J Virol. 2008 Sep;82(18):9075-85. doi: 10.1128/JVI.00732-08. Epub 2008 Jul 9. PMID:18614639 doi:http://dx.doi.org/10.1128/JVI.00732-08
- ↑ Cencic R, Mayer C, Juliano MA, Juliano L, Konrat R, Kontaxis G, Skern T. Investigating the substrate specificity and oligomerisation of the leader protease of foot and mouth disease virus using NMR. J Mol Biol. 2007 Nov 2;373(4):1071-87. Epub 2007 Sep 1. PMID:17897674 doi:10.1016/j.jmb.2007.08.061
|