2k8f

From Proteopedia

Jump to: navigation, search
2k8f, 10 NMR models ()
Gene: EP300, P300 (Homo sapiens), TP53, P53 (Homo sapiens)
Activity: Histone acetyltransferase, with EC number 2.3.1.48
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Contents

Structural Basis for the Regulation of p53 Function by p300

Publication Abstract from PubMed

Coactivators CREB-binding protein and p300 play important roles in mediating the transcriptional activity of p53. Until now, however, no detailed structural information has been available on how any of the domains of p300 interact with p53. Here, we report the NMR structure of the complex of the Taz2 (C/H3) domain of p300 and the N-terminal transactivation domain of p53. In the complex, p53 forms a short alpha helix and interacts with the Taz2 domain through an extended surface. Mutational analyses demonstrate the importance of hydrophobic residues for complex stabilization. Additionally, they suggest that the increased affinity of Taz2 for p53(1-39) phosphorylated at Thr(18) is due in part to electrostatic interactions of the phosphate with neighboring arginine residues in Taz2. Thermodynamic experiments revealed the importance of hydrophobic interactions in the complex of Taz2 with p53 phosphorylated at Ser(15) and Thr(18).

Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation., Feng H, Jenkins LM, Durell SR, Hayashi R, Mazur SJ, Cherry S, Tropea JE, Miller M, Wlodawer A, Appella E, Bai Y, Structure. 2009 Feb 13;17(2):202-10. PMID:19217391

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Disease

[EP300_HUMAN] Note=Defects in EP300 may play a role in epithelial cancer. Note=Chromosomal aberrations involving EP300 may be a cause of acute myeloid leukemias. Translocation t(8;22)(p11;q13) with KAT6A. Defects in EP300 are the cause of Rubinstein-Taybi syndrome type 2 (RSTS2) [MIM:613684]. A disorder characterized by craniofacial abnormalities, postnatal growth deficiency, broad thumbs, broad big toes, mental retardation and a propensity for development of malignancies. Some individuals with RSTS2 have less severe mental impairment, more severe microcephaly, and a greater degree of changes in facial bone structure than RSTS1 patients.[1] [P53_HUMAN] Note=TP53 is found in increased amounts in a wide variety of transformed cells. TP53 is frequently mutated or inactivated in about 60% of cancers. TP53 defects are found in Barrett metaplasia a condition in which the normally stratified squamous epithelium of the lower esophagus is replaced by a metaplastic columnar epithelium. The condition develops as a complication in approximately 10% of patients with chronic gastroesophageal reflux disease and predisposes to the development of esophageal adenocarcinoma. Defects in TP53 are a cause of esophageal cancer (ESCR) [MIM:133239]. Defects in TP53 are a cause of Li-Fraumeni syndrome (LFS) [MIM:151623]. LFS is an autosomal dominant familial cancer syndrome that in its classic form is defined by the existence of a proband affected by a sarcoma before 45 years with a first degree relative affected by any tumor before 45 years and another first degree relative with any tumor before 45 years or a sarcoma at any age. Other clinical definitions for LFS have been proposed (PubMed:8118819 and PubMed:8718514) and called Li-Fraumeni like syndrome (LFL). In these families affected relatives develop a diverse set of malignancies at unusually early ages. Four types of cancers account for 80% of tumors occurring in TP53 germline mutation carriers: breast cancers, soft tissue and bone sarcomas, brain tumors (astrocytomas) and adrenocortical carcinomas. Less frequent tumors include choroid plexus carcinoma or papilloma before the age of 15, rhabdomyosarcoma before the age of 5, leukemia, Wilms tumor, malignant phyllodes tumor, colorectal and gastric cancers.[2][3][4][5][6][7][8][9][10][11] Defects in TP53 are involved in head and neck squamous cell carcinomas (HNSCC) [MIM:275355]; also known as squamous cell carcinoma of the head and neck. Defects in TP53 are a cause of lung cancer (LNCR) [MIM:211980]. LNCR is a common malignancy affecting tissues of the lung. The most common form of lung cancer is non-small cell lung cancer (NSCLC) that can be divided into 3 major histologic subtypes: squamous cell carcinoma, adenocarcinoma, and large cell lung cancer. NSCLC is often diagnosed at an advanced stage and has a poor prognosis. Defects in TP53 are a cause of choroid plexus papilloma (CPLPA) [MIM:260500]. Choroid plexus papilloma is a slow-growing benign tumor of the choroid plexus that often invades the leptomeninges. In children it is usually in a lateral ventricle but in adults it is more often in the fourth ventricle. Hydrocephalus is common, either from obstruction or from tumor secretion of cerebrospinal fluid. If it undergoes malignant transformation it is called a choroid plexus carcinoma. Primary choroid plexus tumors are rare and usually occur in early childhood.[12] Defects in TP53 are a cause of adrenocortical carcinoma (ADCC) [MIM:202300]. ADCC is a rare childhood tumor of the adrenal cortex. It occurs with increased frequency in patients with the Beckwith-Wiedemann syndrome and is a component tumor in Li-Fraumeni syndrome.[13] Defects in TP53 are the cause of susceptibility to basal cell carcinoma 7 (BCC7) [MIM:614740]. A common malignant skin neoplasm that typically appears on hair-bearing skin, most commonly on sun-exposed areas. It is slow growing and rarely metastasizes, but has potentialities for local invasion and destruction. It usually develops as a flat, firm, pale area that is small, raised, pink or red, translucent, shiny, and waxy, and the area may bleed following minor injury. Tumor size can vary from a few millimeters to several centimeters in diameter.[14]

Function

[EP300_HUMAN] Functions as histone acetyltransferase and regulates transcription via chromatin remodeling. Acetylates all four core histones in nucleosomes. Histone acetylation gives an epigenetic tag for transcriptional activation. Mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. Also functions as acetyltransferase for nonhistone targets. Acetylates 'Lys-131' of ALX1 and acts as its coactivator in the presence of CREBBP. Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function. Acetylates HDAC1 leading to its inactivation and modulation of transcription. Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2. Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement. Can also mediate transcriptional repression. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Acetylates FOXO1 and enhances its transcriptional activity.[15][16][17][18][19][20][21][22][23] [P53_HUMAN] Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; te function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seem to have to effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis.[24][25][26][27][28][29][30][31][32][33][34]

About this Structure

2k8f is a 2 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA.

See Also

Reference

  • Feng H, Jenkins LM, Durell SR, Hayashi R, Mazur SJ, Cherry S, Tropea JE, Miller M, Wlodawer A, Appella E, Bai Y. Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure. 2009 Feb 13;17(2):202-10. PMID:19217391 doi:10.1016/j.str.2008.12.009
  1. Roelfsema JH, White SJ, Ariyurek Y, Bartholdi D, Niedrist D, Papadia F, Bacino CA, den Dunnen JT, van Ommen GJ, Breuning MH, Hennekam RC, Peters DJ. Genetic heterogeneity in Rubinstein-Taybi syndrome: mutations in both the CBP and EP300 genes cause disease. Am J Hum Genet. 2005 Apr;76(4):572-80. Epub 2005 Feb 10. PMID:15706485 doi:S0002-9297(07)62869-9
  2. Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13777-82. PMID:10570149
  3. Law JC, Strong LC, Chidambaram A, Ferrell RE. A germ line mutation in exon 5 of the p53 gene in an extended cancer family. Cancer Res. 1991 Dec 1;51(23 Pt 1):6385-7. PMID:1933902
  4. Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, et al.. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990 Nov 30;250(4985):1233-8. PMID:1978757
  5. Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990 Dec 20-27;348(6303):747-9. PMID:2259385 doi:http://dx.doi.org/10.1038/348747a0
  6. Felix CA, Nau MM, Takahashi T, Mitsudomi T, Chiba I, Poplack DG, Reaman GH, Cole DE, Letterio JJ, Whang-Peng J, et al.. Hereditary and acquired p53 gene mutations in childhood acute lymphoblastic leukemia. J Clin Invest. 1992 Feb;89(2):640-7. PMID:1737852 doi:http://dx.doi.org/10.1172/JCI115630
  7. Malkin D, Jolly KW, Barbier N, Look AT, Friend SH, Gebhardt MC, Andersen TI, Borresen AL, Li FP, Garber J, et al.. Germline mutations of the p53 tumor-suppressor gene in children and young adults with second malignant neoplasms. N Engl J Med. 1992 May 14;326(20):1309-15. PMID:1565144 doi:http://dx.doi.org/10.1056/NEJM199205143262002
  8. Frebourg T, Barbier N, Yan YX, Garber JE, Dreyfus M, Fraumeni J Jr, Li FP, Friend SH. Germ-line p53 mutations in 15 families with Li-Fraumeni syndrome. Am J Hum Genet. 1995 Mar;56(3):608-15. PMID:7887414
  9. Varley JM, McGown G, Thorncroft M, Tricker KJ, Teare MD, Santibanez-Koref MF, Martin J, Birch JM, Evans DG. An extended Li-Fraumeni kindred with gastric carcinoma and a codon 175 mutation in TP53. J Med Genet. 1995 Dec;32(12):942-5. PMID:8825920
  10. Luca JW, Strong LC, Hansen MF. A germline missense mutation R337C in exon 10 of the human p53 gene. Hum Mutat. 1998;Suppl 1:S58-61. PMID:9452042
  11. Guran S, Tunca Y, Imirzalioglu N. Hereditary TP53 codon 292 and somatic P16INK4A codon 94 mutations in a Li-Fraumeni syndrome family. Cancer Genet Cytogenet. 1999 Sep;113(2):145-51. PMID:10484981
  12. Rutherford J, Chu CE, Duddy PM, Charlton RS, Chumas P, Taylor GR, Lu X, Barnes DM, Camplejohn RS. Investigations on a clinically and functionally unusual and novel germline p53 mutation. Br J Cancer. 2002 May 20;86(10):1592-6. PMID:12085209 doi:10.1038/sj.bjc.6600269
  13. Ribeiro RC, Sandrini F, Figueiredo B, Zambetti GP, Michalkiewicz E, Lafferty AR, DeLacerda L, Rabin M, Cadwell C, Sampaio G, Cat I, Stratakis CA, Sandrini R. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9330-5. PMID:11481490 doi:10.1073/pnas.161479898
  14. Stacey SN, Sulem P, Jonasdottir A, Masson G, Gudmundsson J, Gudbjartsson DF, Magnusson OT, Gudjonsson SA, Sigurgeirsson B, Thorisdottir K, Ragnarsson R, Benediktsdottir KR, Nexo BA, Tjonneland A, Overvad K, Rudnai P, Gurzau E, Koppova K, Hemminki K, Corredera C, Fuentelsaz V, Grasa P, Navarrete S, Fuertes F, Garcia-Prats MD, Sanambrosio E, Panadero A, De Juan A, Garcia A, Rivera F, Planelles D, Soriano V, Requena C, Aben KK, van Rossum MM, Cremers RG, van Oort IM, van Spronsen DJ, Schalken JA, Peters WH, Helfand BT, Donovan JL, Hamdy FC, Badescu D, Codreanu O, Jinga M, Csiki IE, Constantinescu V, Badea P, Mates IN, Dinu DE, Constantin A, Mates D, Kristjansdottir S, Agnarsson BA, Jonsson E, Barkardottir RB, Einarsson GV, Sigurdsson F, Moller PH, Stefansson T, Valdimarsson T, Johannsson OT, Sigurdsson H, Jonsson T, Jonasson JG, Tryggvadottir L, Rice T, Hansen HM, Xiao Y, Lachance DH, O Neill BP, Kosel ML, Decker PA, Thorleifsson G, Johannsdottir H, Helgadottir HT, Sigurdsson A, Steinthorsdottir V, Lindblom A, Sandler RS, Keku TO, Banasik K, Jorgensen T, Witte DR, Hansen T, Pedersen O, Jinga V, Neal DE, Catalona WJ, Wrensch M, Wiencke J, Jenkins RB, Nagore E, Vogel U, Kiemeney LA, Kumar R, Mayordomo JI, Olafsson JH, Kong A, Thorsteinsdottir U, Rafnar T, Stefansson K. A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat Genet. 2011 Sep 25;43(11):1098-103. doi: 10.1038/ng.926. PMID:21946351 doi:10.1038/ng.926
  15. Xu W, Chen H, Du K, Asahara H, Tini M, Emerson BM, Montminy M, Evans RM. A transcriptional switch mediated by cofactor methylation. Science. 2001 Dec 21;294(5551):2507-11. Epub 2001 Nov 8. PMID:11701890 doi:10.1126/science.1065961
  16. Snowden AW, Anderson LA, Webster GA, Perkins ND. A novel transcriptional repression domain mediates p21(WAF1/CIP1) induction of p300 transactivation. Mol Cell Biol. 2000 Apr;20(8):2676-86. PMID:10733570
  17. Hasan S, Stucki M, Hassa PO, Imhof R, Gehrig P, Hunziker P, Hubscher U, Hottiger MO. Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300. Mol Cell. 2001 Jun;7(6):1221-31. PMID:11430825
  18. Braganca J, Eloranta JJ, Bamforth SD, Ibbitt JC, Hurst HC, Bhattacharya S. Physical and functional interactions among AP-2 transcription factors, p300/CREB-binding protein, and CITED2. J Biol Chem. 2003 May 2;278(18):16021-9. Epub 2003 Feb 12. PMID:12586840 doi:10.1074/jbc.M208144200
  19. Iioka T, Furukawa K, Yamaguchi A, Shindo H, Yamashita S, Tsukazaki T. P300/CBP acts as a coactivator to cartilage homeoprotein-1 (Cart1), paired-like homeoprotein, through acetylation of the conserved lysine residue adjacent to the homeodomain. J Bone Miner Res. 2003 Aug;18(8):1419-29. PMID:12929931 doi:http://dx.doi.org/10.1359/jbmr.2003.18.8.1419
  20. An W, Kim J, Roeder RG. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell. 2004 Jun 11;117(6):735-48. PMID:15186775 doi:10.1016/j.cell.2004.05.009
  21. Perrot V, Rechler MM. The coactivator p300 directly acetylates the forkhead transcription factor Foxo1 and stimulates Foxo1-induced transcription. Mol Endocrinol. 2005 Sep;19(9):2283-98. Epub 2005 May 12. PMID:15890677 doi:10.1210/me.2004-0292
  22. Qiu Y, Zhao Y, Becker M, John S, Parekh BS, Huang S, Hendarwanto A, Martinez ED, Chen Y, Lu H, Adkins NL, Stavreva DA, Wiench M, Georgel PT, Schiltz RL, Hager GL. HDAC1 acetylation is linked to progressive modulation of steroid receptor-induced gene transcription. Mol Cell. 2006 Jun 9;22(5):669-79. PMID:16762839 doi:10.1016/j.molcel.2006.04.019
  23. Han Y, Jin YH, Kim YJ, Kang BY, Choi HJ, Kim DW, Yeo CY, Lee KY. Acetylation of Sirt2 by p300 attenuates its deacetylase activity. Biochem Biophys Res Commun. 2008 Oct 31;375(4):576-80. doi:, 10.1016/j.bbrc.2008.08.042. Epub 2008 Aug 21. PMID:18722353 doi:10.1016/j.bbrc.2008.08.042
  24. Schneider E, Montenarh M, Wagner P. Regulation of CAK kinase activity by p53. Oncogene. 1998 Nov 26;17(21):2733-41. PMID:9840937 doi:10.1038/sj.onc.1202504
  25. Guo A, Salomoni P, Luo J, Shih A, Zhong S, Gu W, Pandolfi PP. The function of PML in p53-dependent apoptosis. Nat Cell Biol. 2000 Oct;2(10):730-6. PMID:11025664 doi:10.1038/35036365
  26. Louria-Hayon I, Grossman T, Sionov RV, Alsheich O, Pandolfi PP, Haupt Y. The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. J Biol Chem. 2003 Aug 29;278(35):33134-41. Epub 2003 Jun 16. PMID:12810724 doi:10.1074/jbc.M301264200
  27. An W, Kim J, Roeder RG. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell. 2004 Jun 11;117(6):735-48. PMID:15186775 doi:10.1016/j.cell.2004.05.009
  28. Ghosh A, Stewart D, Matlashewski G. Regulation of human p53 activity and cell localization by alternative splicing. Mol Cell Biol. 2004 Sep;24(18):7987-97. PMID:15340061 doi:10.1128/MCB.24.18.7987-7997.2004
  29. Zhao Y, Katzman RB, Delmolino LM, Bhat I, Zhang Y, Gurumurthy CB, Germaniuk-Kurowska A, Reddi HV, Solomon A, Zeng MS, Kung A, Ma H, Gao Q, Dimri G, Stanculescu A, Miele L, Wu L, Griffin JD, Wazer DE, Band H, Band V. The notch regulator MAML1 interacts with p53 and functions as a coactivator. J Biol Chem. 2007 Apr 20;282(16):11969-81. Epub 2007 Feb 22. PMID:17317671 doi:M608974200
  30. Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K. DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell. 2007 Mar 9;25(5):725-38. PMID:17349958 doi:10.1016/j.molcel.2007.02.007
  31. Allton K, Jain AK, Herz HM, Tsai WW, Jung SY, Qin J, Bergmann A, Johnson RL, Barton MC. Trim24 targets endogenous p53 for degradation. Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11612-6. doi:, 10.1073/pnas.0813177106. Epub 2009 Jun 25. PMID:19556538 doi:10.1073/pnas.0813177106
  32. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010 Aug 6;142(3):409-19. doi: 10.1016/j.cell.2010.06.040. PMID:20673990 doi:10.1016/j.cell.2010.06.040
  33. Wu L, Ma CA, Zhao Y, Jain A. Aurora B interacts with NIR-p53, leading to p53 phosphorylation in its DNA-binding domain and subsequent functional suppression. J Biol Chem. 2011 Jan 21;286(3):2236-44. doi: 10.1074/jbc.M110.174755. Epub 2010 , Oct 19. PMID:20959462 doi:10.1074/jbc.M110.174755
  34. Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell. 2012 Jun 22;149(7):1536-48. doi: 10.1016/j.cell.2012.05.014. PMID:22726440 doi:10.1016/j.cell.2012.05.014

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools