2ko2

From Proteopedia

Jump to: navigation, search

NOGO66

Structural highlights

2ko2 is a 1 chain structure with sequence from Mus musculus. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RTN4_MOUSE Developmental neurite growth regulatory factor with a role as a negative regulator of axon-axon adhesion and growth, and as a facilitator of neurite branching. Regulates neurite fasciculation, branching and extension in the developing nervous system. Involved in down-regulation of growth, stabilization of wiring and restriction of plasticity in the adult CNS. Regulates the radial migration of cortical neurons via an RTN4R-LINGO1 containing receptor complex. May inhibit BACE1 activity and amyloid precursor protein processing.[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Repair of damage to the central nervous system (CNS) is inhibited by the presence of myelin proteins that prevent axonal regrowth. Consequently, growth inhibitors and their common receptor have been identified as targets in the treatment of injury to the CNS. Here we describe the structure of the extracellular domain of the neurite outgrowth inhibitor (Nogo) in a membrane-like environment. Isoforms of Nogo are expressed with a common C terminus containing two transmembrane (TM) helices. The ectodomain between the two TM helices, Nogo-66, is active in preventing axonal growth [GrandPre T, Nakamura F, Vartanian T, Strittmatter SM (2000) Nature 403:439-444]. We studied the structure of Nogo-66 alone and in the presence of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) vesicles and dodecylphosphocholine (DPC) micelles as membrane mimetics. We find that Nogo-66 is largely disordered when free in solution. However, when bound to a phosphocholine surface Nogo-66 adopts a unique, stable fold, even in the absence of TM anchors. Using paramagnetic probes and protein-DPC nuclear Overhauser effects (NOEs), we define portions of the growth inhibitor likely to be accessible on the cell surface. With these data we predict that residues (28-58) are available to bind the Nogo receptor, which is entirely consistent with functional assays. Moreover, the conformations and relative positions of side chains recognized by the receptor are now defined and provide a foundation for antagonist design.

Protein folding at the membrane interface, the structure of Nogo-66 requires interactions with a phosphocholine surface.,Vasudevan SV, Schulz J, Zhou C, Cocco MJ Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6847-51. Epub 2010 Mar 29. PMID:20351248[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
No citations found

References

  1. Mathis C, Schroter A, Thallmair M, Schwab ME. Nogo-a regulates neural precursor migration in the embryonic mouse cortex. Cereb Cortex. 2010 Oct;20(10):2380-90. doi: 10.1093/cercor/bhp307. Epub 2010 Jan , 21. PMID:20093372 doi:http://dx.doi.org/10.1093/cercor/bhp307
  2. Petrinovic MM, Duncan CS, Bourikas D, Weinman O, Montani L, Schroeter A, Maerki D, Sommer L, Stoeckli ET, Schwab ME. Neuronal Nogo-A regulates neurite fasciculation, branching and extension in the developing nervous system. Development. 2010 Aug 1;137(15):2539-50. doi: 10.1242/dev.048371. Epub 2010 Jun, 23. PMID:20573699 doi:http://dx.doi.org/10.1242/dev.048371
  3. Vasudevan SV, Schulz J, Zhou C, Cocco MJ. Protein folding at the membrane interface, the structure of Nogo-66 requires interactions with a phosphocholine surface. Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6847-51. Epub 2010 Mar 29. PMID:20351248

Contents


PDB ID 2ko2

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools