2xfm
From Proteopedia
Complex structure of the MIWI Paz domain bound to methylated single stranded RNA
Structural highlights
FunctionPIWL1_MOUSE Plays a central role during spermatogenesis by repressing transposable elements and preventing their mobilization, which is essential for the germline integrity. Acts via the piRNA metabolic process, which mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins and governs the methylation and subsequent repression of transposons. Directly binds methylated piRNAs, a class of 24 to 30 nucleotide RNAs that are generated by a Dicer-independent mechanism and are primarily derived from transposons and other repeated sequence elements. Besides their function in transposable elements repression, piRNAs are probably involved in other processes during meiosis such as translation regulation. Probable component of some RISC complex, which mediates RNA cleavage and translational silencing. Also plays a role in the formation of chromatoid bodies and is required for some miRNAs stability.[1] Publication Abstract from PubMedPiwi proteins are germline-specific Argonautes that associate with small RNAs called Piwi-interacting RNAs (piRNAs), and together with these RNAs are implicated in transposon silencing. The PAZ domain of Argonaute proteins recognizes the 3'-end of the RNA, which in the case of piRNAs is invariably modified with a 2'-O-methyl group. Here, we present the solution structure of the PAZ domain from the mouse Piwi protein, MIWI, in complex with an 8-mer piRNA mimic. The methyl group is positioned in a hydrophobic cavity made of conserved amino acids from strand beta7 and helix alpha3, where it is contacted by the side chain of methionine-382. Our structure is similar to that of Ago-PAZ, but subtle differences illustrate how the PAZ domain has evolved to accommodate distinct 3' ends from a variety of RNA substrates. Recognition of 2'-O-Methylated 3'-End of piRNA by the PAZ Domain of a Piwi Protein.,Simon B, Kirkpatrick JP, Eckhardt S, Reuter M, Rocha EA, Andrade-Navarro MA, Sehr P, Pillai RS, Carlomagno T Structure. 2011 Jan 13. PMID:21237665[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|