3djy
From Proteopedia
Nonaged Form of Human Butyrylcholinesterase Inhibited by Tabun
Structural highlights
Disease[CHLE_HUMAN] Defects in BCHE are the cause of butyrylcholinesterase deficiency (BChE deficiency) [MIM:177400]. BChE deficiency is a metabolic disorder characterized by prolonged apnoea after the use of certain anesthetic drugs, including the muscle relaxants succinylcholine or mivacurium and other ester local anesthetics. The duration of the prolonged apnoea varies significantly depending on the extent of the enzyme deficiency. BChE deficiency is a multifactorial disorder. The hereditary condition is transmitted as an autosomal recessive trait. Function[CHLE_HUMAN] Esterase with broad substrate specificity. Contributes to the inactivation of the neurotransmitter acetylcholine. Can degrade neurotoxic organophosphate esters.[1] [2] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHuman butyrylcholinesterase (hBChE) hydrolyzes or scavenges a wide range of toxic esters, including heroin, cocaine, carbamate pesticides, organophosphorus pesticides, and nerve agents. Organophosphates (OPs) exert their acute toxicity through inhibition of acetylcholinesterase (AChE) by phosphylation of the catalytic serine. Phosphylated cholinesterase (ChE) can undergo a spontaneous, time-dependent process called "aging", during which the OP-ChE conjugate is dealkylated. This leads to irreversible inhibition of the enzyme. The inhibition of ChEs by tabun and the subsequent aging reaction are of particular interest, because tabun-ChE conjugates display an extraordinary resistance toward most current oxime reactivators. We investigated the structural basis of oxime resistance for phosphoramidated ChE conjugates by determining the crystal structures of the non-aged and aged forms of hBChE inhibited by tabun, and by updating the refinement of non-aged and aged tabun-inhibited mouse AChE (mAChE). Structures for non-aged and aged tabun-hBChE were refined to 2.3 and 2.1 A, respectively. The refined structures of aged ChE conjugates clearly show that the aging reaction proceeds through O-dealkylation of the P( R) enantiomer of tabun. After dealkylation, the negatively charged oxygen forms a strong salt bridge with protonated His438N2 that prevents reactivation. Mass spectrometric analysis of the aged tabun-inhibited hBChE showed that both the dimethylamine and ethoxy side chains were missing from the phosphorus. Loss of the ethoxy is consistent with the crystallography results. Loss of the dimethylamine is consistent with acid-catalyzed deamidation during the preparation of the aged adduct for mass spectrometry. The reported 3D data will help in the design of new oximes capable of reactivating tabun-ChE conjugates. Aging of Cholinesterases Phosphylated by Tabun Proceeds through O-Dealkylation.,Carletti E, Li H, Li B, Ekstrom F, Nicolet Y, Loiodice M, Gillon E, Froment MT, Lockridge O, Schopfer LM, Masson P, Nachon F J Am Chem Soc. 2008 Nov 1. PMID:18975951[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|