4epa
From Proteopedia
The crystal structure of the ferric yersiniabactin uptake receptor FyuA from Yersinia pestis
Structural highlights
Function[FYUA_YERPE] Receptor for the bacteriocin pesticin and for the siderophore yersiniabactin. Publication Abstract from PubMedBacterial pathogens are becoming increasingly resistant to antibiotics. As an alternative therapeutic strategy, phage therapy reagents containing purified viral lysins have been developed against Gram-positive organisms but not against Gram-negative organisms due to the inability of these types of drugs to cross the bacterial outer membrane. We solved the crystal structures of a Yersinia pestis outer membrane transporter called FyuA and a bacterial toxin called pesticin that targets this transporter. FyuA is a beta-barrel membrane protein belonging to the family of TonB dependent transporters, whereas pesticin is a soluble protein with two domains, one that binds to FyuA and another that is structurally similar to phage T4 lysozyme. The structure of pesticin allowed us to design a phage therapy reagent comprised of the FyuA binding domain of pesticin fused to the N-terminus of T4 lysozyme. This hybrid toxin kills specific Yersinia and pathogenic E. coli strains and, importantly, can evade the pesticin immunity protein (Pim) giving it a distinct advantage over pesticin. Furthermore, because FyuA is required for virulence and is more common in pathogenic bacteria, the hybrid toxin also has the advantage of targeting primarily disease-causing bacteria rather than indiscriminately eliminating natural gut flora. Structural engineering of a phage lysin that targets Gram-negative pathogens.,Lukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N, Fairman JW, Noinaj N, Kirby TL, Henderson JP, Steven AC, Hinnebusch BJ, Buchanan SK Proc Natl Acad Sci U S A. 2012 Jun 7. PMID:22679291[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|