| Structural highlights
Function
[PAD4_ARATH] Probable lipase required downstream of MPK4 for accumulation of the plant defense-potentiating molecule, salicylic acid, thus contributing to the plant innate immunity against invasive biotrophic pathogens and to defense mechanisms upon recognition of microbe-associated molecular patterns (MAMPs). Participates in the regulation of various molecular and physiological processes that influence fitness. Together with SG101, required for programmed cell death (PCD) triggered by NBS-LRR resistance proteins (e.g. RPS4, RPW8.1 and RPW8.2) in response to the fungal toxin fumonisin B1 (FB1) and avirulent pathogens (e.g. P.syringae pv. tomato strain DC3000 avrRps4 and pv. maculicola, turnip crinkle virus (TCV), and H.arabidopsidis isolates CALA2, EMOY2, EMWA1 and HIND4). Together with EDS1, confers a basal resistance by restricting the growth of virulent pathogens (e.g. H.arabidopsidis isolates NOCO2 and EMCO5, E.orontii isolate MGH, and P.syringae pv. tomato strain DC3000 or expressing HopW1-1 (HopPmaA)). Necessary for the salicylic acid-(SA-) dependent systemic acquired resistance (SAR) response that involves expression of multiple defense responses, including synthesis of the phytoalexin camalexin and expression of pathogenesis-related genes (e.g. PR1, ALD1, BGL2 and PR5) in response to pathogens, triggering a signal amplification loop that increases SA levels via EDS5 and SID2, but, together with EDS1, seems to repress the ethylene/jasmonic acid (ET/JA) defense pathway. May also function in response to abiotic stresses such as UV-C light and LSD1-dependent acclimatization to light conditions that promote excess excitation energy (EEE), probably by transducing redox signals and modulating stomatal conductance. Regulates the formation of lysigenous aerenchyma in hypocotyls in response to hypoxia, maybe via hydrogen peroxide production. Modulates leaf senescence in insect-infested tissue and triggers a phloem-based defense mechanism including antibiosis (e.g. green peach aphid (GPA), M.persicae) to limit phloem sap uptake and insect growth, thus providing an EDS1-independent basal resistance to insects. Also involved in regulation of root meristematic zone-targeted growth arrest together with EDS1 and in a VICTR-dependent manner.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30]
Publication Abstract from PubMed
Plant nucleotide-binding leucine-rich repeat-containing (NLR) receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain sense pathogen effectors to enable TIR-encoded nicotinamide adenine dinucleotide hydrolase (NADase) activity for immune signaling. TIR-NLR signaling requires the helper NLRs N requirement gene 1 (NRG1), Activated Disease Resistance 1 (ADR1), and Enhanced Disease Susceptibility 1 (EDS1), which forms a heterodimer with each of its paralogs Phytoalexin Deficient 4 (PAD4) and Senescence-Associated Gene 101 (SAG101). Here, we show that TIR-containing proteins catalyze the production of 2'-(5-phosphoribosyl)-5'-adenosine monophosphate (pRib-AMP) and diphosphate (pRib-ADP) in vitro and in planta. Biochemical and structural data demonstrate that EDS1-PAD4 is a receptor complex for pRib-AMP and pRib-ADP, which allosterically promote EDS1-PAD4 interaction with ADR1-L1 but not NRG1A. Our study identifies TIR-catalyzed pRib-AMP and pRib-ADP as a missing link in TIR signaling through EDS1-PAD4 and as likely second messengers for plant immunity.
Identification and receptor mechanism of TIR-catalyzed small molecules in plant immunity.,Huang S, Jia A, Song W, Hessler G, Meng Y, Sun Y, Xu L, Laessle H, Jirschitzka J, Ma S, Xiao Y, Yu D, Hou J, Liu R, Sun H, Liu X, Han Z, Chang J, Parker JE, Chai J Science. 2022 Jul 29;377(6605):eabq3297. doi: 10.1126/science.abq3297. Epub 2022 , Jul 29. PMID:35857645[31]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE, Ausubel FM, Glazebrook J. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13583-8. doi:, 10.1073/pnas.96.23.13583. PMID:10557364 doi:http://dx.doi.org/10.1073/pnas.96.23.13583
- ↑ Gupta V, Willits MG, Glazebrook J. Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA. Mol Plant Microbe Interact. 2000 May;13(5):503-11. doi:, 10.1094/MPMI.2000.13.5.503. PMID:10796016 doi:http://dx.doi.org/10.1094/MPMI.2000.13.5.503
- ↑ Asai T, Stone JM, Heard JE, Kovtun Y, Yorgey P, Sheen J, Ausubel FM. Fumonisin B1-induced cell death in arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell. 2000 Oct;12(10):1823-36. PMID:11041879
- ↑ Feys BJ, Moisan LJ, Newman MA, Parker JE. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J. 2001 Oct 1;20(19):5400-11. doi: 10.1093/emboj/20.19.5400. PMID:11574472 doi:http://dx.doi.org/10.1093/emboj/20.19.5400
- ↑ Rusterucci C, Aviv DH, Holt BF 3rd, Dangl JL, Parker JE. The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell. 2001 Oct;13(10):2211-24. doi: 10.1105/tpc.010085. PMID:11595797 doi:http://dx.doi.org/10.1105/tpc.010085
- ↑ Nawrath C, Heck S, Parinthawong N, Metraux JP. EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell. 2002 Jan;14(1):275-86. doi: 10.1105/tpc.010376. PMID:11826312 doi:http://dx.doi.org/10.1105/tpc.010376
- ↑ van der Biezen EA, Freddie CT, Kahn K, Parker JE, Jones JD. Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant J. 2002 Feb;29(4):439-51. PMID:11846877
- ↑ Heck S, Grau T, Buchala A, Metraux JP, Nawrath C. Genetic evidence that expression of NahG modifies defence pathways independent of salicylic acid biosynthesis in the Arabidopsis-Pseudomonas syringae pv. tomato interaction. Plant J. 2003 Nov;36(3):342-52. doi: 10.1046/j.1365-313x.2003.01881.x. PMID:14617091 doi:http://dx.doi.org/10.1046/j.1365-313x.2003.01881.x
- ↑ Mateo A, Muhlenbock P, Rusterucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S. LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol. 2004 Sep;136(1):2818-30. doi: 10.1104/pp.104.043646. Epub 2004 Sep, 3. PMID:15347794 doi:http://dx.doi.org/10.1104/pp.104.043646
- ↑ Song JT, Lu H, McDowell JM, Greenberg JT. A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J. 2004 Oct;40(2):200-12. PMID:15447647 doi:10.1111/j.1365-313X.2004.02200.x
- ↑ Xiao S, Calis O, Patrick E, Zhang G, Charoenwattana P, Muskett P, Parker JE, Turner JG. The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. Plant J. 2005 Apr;42(1):95-110. doi: 10.1111/j.1365-313X.2005.02356.x. PMID:15773856 doi:http://dx.doi.org/10.1111/j.1365-313X.2005.02356.x
- ↑ Feys BJ, Wiermer M, Bhat RA, Moisan LJ, Medina-Escobar N, Neu C, Cabral A, Parker JE. Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell. 2005 Sep;17(9):2601-13. Epub 2005 Jul 22. PMID:16040633 doi:http://dx.doi.org/tpc.105.033910
- ↑ Pegadaraju V, Knepper C, Reese J, Shah J. Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. Plant Physiol. 2005 Dec;139(4):1927-34. doi: 10.1104/pp.105.070433. Epub 2005 Nov, 18. PMID:16299172 doi:http://dx.doi.org/10.1104/pp.105.070433
- ↑ McDowell JM, Williams SG, Funderburg NT, Eulgem T, Dangl JL. Genetic analysis of developmentally regulated resistance to downy mildew (Hyaloperonospora parasitica) in Arabidopsis thaliana. Mol Plant Microbe Interact. 2005 Nov;18(11):1226-34. PMID:16353557 doi:10.1094/MPMI-18-1226
- ↑ Brodersen P, Petersen M, Bjorn Nielsen H, Zhu S, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J. 2006 Aug;47(4):532-46. doi: 10.1111/j.1365-313X.2006.02806.x. Epub 2006 , Jun 30. PMID:16813576 doi:http://dx.doi.org/10.1111/j.1365-313X.2006.02806.x
- ↑ Chandra-Shekara AC, Venugopal SC, Barman SR, Kachroo A, Kachroo P. Plastidial fatty acid levels regulate resistance gene-dependent defense signaling in Arabidopsis. Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7277-82. doi:, 10.1073/pnas.0609259104. Epub 2007 Apr 12. PMID:17431038 doi:http://dx.doi.org/10.1073/pnas.0609259104
- ↑ Pegadaraju V, Louis J, Singh V, Reese JC, Bautor J, Feys BJ, Cook G, Parker JE, Shah J. Phloem-based resistance to green peach aphid is controlled by Arabidopsis PHYTOALEXIN DEFICIENT4 without its signaling partner ENHANCED DISEASE SUSCEPTIBILITY1. Plant J. 2007 Oct;52(2):332-41. doi: 10.1111/j.1365-313X.2007.03241.x. Epub 2007 , Aug 24. PMID:17725549 doi:http://dx.doi.org/10.1111/j.1365-313X.2007.03241.x
- ↑ Tsuda K, Sato M, Glazebrook J, Cohen JD, Katagiri F. Interplay between MAMP-triggered and SA-mediated defense responses. Plant J. 2008 Mar;53(5):763-75. doi: 10.1111/j.1365-313X.2007.03369.x. Epub 2007 , Nov 14. PMID:18005228 doi:http://dx.doi.org/10.1111/j.1365-313X.2007.03369.x
- ↑ Muhlenbock P, Plaszczyca M, Plaszczyca M, Mellerowicz E, Karpinski S. Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1. Plant Cell. 2007 Nov;19(11):3819-30. doi: 10.1105/tpc.106.048843. Epub 2007 Nov, 30. PMID:18055613 doi:http://dx.doi.org/10.1105/tpc.106.048843
- ↑ Lee MW, Jelenska J, Greenberg JT. Arabidopsis proteins important for modulating defense responses to Pseudomonas syringae that secrete HopW1-1. Plant J. 2008 May;54(3):452-65. doi: 10.1111/j.1365-313X.2008.03439.x. Epub 2008 , Feb 7. PMID:18266921 doi:10.1111/j.1365-313X.2008.03439.x
- ↑ Louis J, Leung Q, Pegadaraju V, Reese J, Shah J. PAD4-dependent antibiosis contributes to the ssi2-conferred hyper-resistance to the green peach aphid. Mol Plant Microbe Interact. 2010 May;23(5):618-27. doi: 10.1094/MPMI-23-5-0618. PMID:20367470 doi:http://dx.doi.org/10.1094/MPMI-23-5-0618
- ↑ Rietz S, Stamm A, Malonek S, Wagner S, Becker D, Medina-Escobar N, Vlot AC, Feys BJ, Niefind K, Parker JE. Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. New Phytol. 2011 Jul;191(1):107-19. doi: 10.1111/j.1469-8137.2011.03675.x. Epub, 2011 Mar 17. PMID:21434927 doi:http://dx.doi.org/10.1111/j.1469-8137.2011.03675.x
- ↑ Zhu S, Jeong RD, Venugopal SC, Lapchyk L, Navarre D, Kachroo A, Kachroo P. SAG101 forms a ternary complex with EDS1 and PAD4 and is required for resistance signaling against turnip crinkle virus. PLoS Pathog. 2011 Nov;7(11):e1002318. doi: 10.1371/journal.ppat.1002318. Epub, 2011 Nov 3. PMID:22072959 doi:http://dx.doi.org/10.1371/journal.ppat.1002318
- ↑ Louis J, Gobbato E, Mondal HA, Feys BJ, Parker JE, Shah J. Discrimination of Arabidopsis PAD4 activities in defense against green peach aphid and pathogens. Plant Physiol. 2012 Apr;158(4):1860-72. doi: 10.1104/pp.112.193417. Epub 2012 Feb, 21. PMID:22353573 doi:http://dx.doi.org/10.1104/pp.112.193417
- ↑ Kim TH, Kunz HH, Bhattacharjee S, Hauser F, Park J, Engineer C, Liu A, Ha T, Parker JE, Gassmann W, Schroeder JI. Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis. Plant Cell. 2012 Dec;24(12):5177-92. doi: 10.1105/tpc.112.107235. Epub 2012 Dec, 28. PMID:23275581 doi:http://dx.doi.org/10.1105/tpc.112.107235
- ↑ Wituszynska W, Slesak I, Vanderauwera S, Szechynska-Hebda M, Kornas A, Van Der Kelen K, Muhlenbock P, Karpinska B, Mackowski S, Van Breusegem F, Karpinski S. Lesion simulating disease1, enhanced disease susceptibility1, and phytoalexin deficient4 conditionally regulate cellular signaling homeostasis, photosynthesis, water use efficiency, and seed yield in Arabidopsis. Plant Physiol. 2013 Apr;161(4):1795-805. doi: 10.1104/pp.112.208116. Epub 2013, Feb 11. PMID:23400705 doi:http://dx.doi.org/10.1104/pp.112.208116
- ↑ Glazebrook J, Rogers EE, Ausubel FM. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics. 1996 Jun;143(2):973-82. PMID:8725243
- ↑ Glazebrook J, Zook M, Mert F, Kagan I, Rogers EE, Crute IR, Holub EB, Hammerschmidt R, Ausubel FM. Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics. 1997 May;146(1):381-92. doi: 10.1093/genetics/146.1.381. PMID:9136026 doi:http://dx.doi.org/10.1093/genetics/146.1.381
- ↑ Zhou N, Tootle TL, Tsui F, Klessig DF, Glazebrook J. PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell. 1998 Jun;10(6):1021-30. doi: 10.1105/tpc.10.6.1021. PMID:9634589 doi:http://dx.doi.org/10.1105/tpc.10.6.1021
- ↑ Reuber TL, Plotnikova JM, Dewdney J, Rogers EE, Wood W, Ausubel FM. Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants. Plant J. 1998 Nov;16(4):473-85. doi: 10.1046/j.1365-313x.1998.00319.x. PMID:9881167 doi:http://dx.doi.org/10.1046/j.1365-313x.1998.00319.x
- ↑ Huang S, Jia A, Song W, Hessler G, Meng Y, Sun Y, Xu L, Laessle H, Jirschitzka J, Ma S, Xiao Y, Yu D, Hou J, Liu R, Sun H, Liu X, Han Z, Chang J, Parker JE, Chai J. Identification and receptor mechanism of TIR-catalyzed small molecules in plant immunity. Science. 2022 Jul 29;377(6605):eabq3297. doi: 10.1126/science.abq3297. Epub 2022 , Jul 29. PMID:35857645 doi:http://dx.doi.org/10.1126/science.abq3297
|