Sandbox

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:08, 4 December 2025) (edit) (undo)
 
(86 intermediate revisions not shown.)
Line 1: Line 1:
-
== Human protein phosphatase 2C ==
+
=== Cryo-EM Structure of the Human TRPV1 Ion Channel ===
-
<Structure load='2IQ1' size='350' frame='true' align='right' caption='Quartenary structure of human protein phosphatase PP2Cm with Mg(II) (PDB ID 4DA1)' scene='Insert optional scene name here' /> Protein Phosphatases 2C are essencial enzymes involved in the regulation of several signaling pathways of branched-chain α-ketoacid dehydrogenase complex (BCKDC) by phosphorylation/dephosphorylation. The PP2C Family are Mg<sup>2+</sup> and Mn<sup>2+</sup> dependent monomeric proteins with two characteristic structural domains: a catalytic domain N-terminal with six alpha-helices, and a C-terminal region with three alpha-helices. The multienzyme complex uses numerous copies of three enzymes as major building blocks E1, E2 and E3. A dihydrolipoyl transacylase (E2) forms the core of the complex with 24 copies in octahedral symmetry.
+
<StructureSection
-
The human branched-chain α-ketoacid dehydrogenase complex ser/thr phosphatase, PP2Cm, (BDP) is attached to the E2 core through non-covalent bonds. PP2Cm is distinguished from other groups of phosphatases by its structural distinction, absolute requirement for divalent cation, the <scene name='32/32/Protein_pp2cm_with_mgii/7'>beta-sheet sandwich</scene> catalytic domain and shows Mn<sup>2+</sup>/Mg<sup>2+</sup> dependent phosphatase activity. PP2Cm structure has two central antiparallel beta sheets that are flanked by alpha helices and the <scene name='32/32/Protein_pp2cm_with_mgii/4'>active site</scene> is located at one end of the beta-sheet sandwich containing two <scene name='32/32/Protein_pp2cm_with_mgii/6'>magnesium ions</scene> coordenated by <scene name='32/32/Protein_pp2cm_with_mgii/5'>Asp-109, Asp-208, Asp-298, and Asp-337</scene> residues.
+
load='3j5p'
-
At high levels of branched-chain ketoacids PP2Cm dephosphorylates Ser-337 and activates mitochondrial BCKDC complex by associating with the E2 component of the complex.
+
size='340'
-
The water molecules at the binuclear metal centre coordinate the phosphate group of the substrate, each ion is hexa-coordinated by <scene name='32/32/Protein_pp2cm_with_mgii/8'>oxygen atoms</scene> from water, providing a nucleophile and general acid in the dephosphorylation reaction, and Arg33 creates a local positive electrostatic potential on the protein for recognition of the phosphate group of the substrate. The nucleophile is the metal-bridging water molecule which could attack the phosphorus atom in an S<sub>N</sub>2 mechanism. Coordination to two Mg<sup>2+</sup> ions may stabilize the morenucleophilic hydroxide ion species. Other ions such as Ca<sup>2+</sup>, Zn<sup>2+</sup> and Ni<sup>2+</sup> inactivate the enzyme by competitively inhibiting Mn<sup>2+</sup> or Mg<sup>2+</sup> binding.
+
side='right'
 +
caption='Cryo-EM structure of the human TRPV1 ion channel in the apo state (Liao et al., 2013; ~3.5 Å resolution)'
 +
scene=''>
 +
</StructureSection>
-
== branched-chain α-ketoacid dehydrogenase complex ==
+
=== Introduction ===
-
The human branched-chain α-ketoacid dehydrogenase (BCKD) complex is part of the mitochondrial α-ketoacid dehydrogenase complex family. Their structure consists of numerous copies of three enzymes E1, E2 and E3. A <scene name='32/32/E2b/1'> dihydrolipoyl transacylase (E2)</scene> forms the core
+
The transient receptor potential vanilloid 1 (TRPV1) ion channel is a heat- and ligand-gated cation channel essential for nociception, inflammatory pain, and thermal sensitivity. Activated by capsaicin, protons, noxious heat (>42°C), and lipid mediators, TRPV1 serves as a polymodal molecular sensor in the peripheral nervous system. Because of its central role in pain signaling, TRPV1 has been a major therapeutic target for developing next-generation analgesics. Understanding its three-dimensional structure is therefore crucial for elucidating its gating mechanism and ligand recognition.
-
of the complex with 24 copies in octahedral symmetry. Copies of the <scene name='32/32/E1/1'> α-ketoacid dehydrogenase (E1)</scene>, and copies of the<scene name='32/32/E3/2'> dihydrolipoamide dehydrogenase (E3)</scene>. In some types of (BCKDC) that are two regulatory enzymes proteins <scene name='32/32/Kinase/1'> protein kinase</scene> and <scene name='32/32/Phosphatase/1'> protein phosphatase</scene> that are attached to the E2 core through non-covalent bonds.
+
-
==References, for further information on PP2Cm==
+
=== Structural Highlights ===
-
* Ævarsson, A. ''et all'' "Crystal structure of human branched-chain α-ketoacid dehydrogenase and the molecular basis of multienzyme complex deficiency in maple syrup urine disease", CellPress. [https://www.sciencedirect.com/science/article/pii/S0969212600001052].
+
Using single-particle cryo-electron microscopy, Liao, Cao, Julius, and Cheng (2013) determined the first near-atomic structures of TRPV1 in multiple functional states, including the apo (resting), capsaicin-bound, and toxin-bound conformations. TRPV1 assembles as a homotetramer, with each subunit containing six transmembrane helices (S1–S6), a re-entrant pore loop, and extensive cytosolic ankyrin repeat domains.
-
* Wynn, R. M. ''et all'' "Structure, function and assembly of mammalian branched-chain α-ketoacid dehydrogenase complex", Alpha-Keto Acid Dehydrogenase Complexes. [https://link.springer.com/chapter/10.1007/978-3-0348-8981-0_7]
+
 
-
* Lu, G. ''et all'' "Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells", The Journal of clinical investigation 119(6):1678-87. [https://www.researchgate.net/publication/24398300_Protein_phosphatase_2Cm_is_a_critical_regulator_of_branched-chain_amino_acid_catabolism_in_mice_and_cultured_cells].
+
The vanilloid-binding pocket—formed between the S3–S4 helices and the S4–S5 linker—was resolved in detail, explaining how capsaicin stabilizes the open conformation by pulling on the S4–S5 linker and reshaping the S6 helices to widen the pore. Structures bound to the double-knot toxin (DkTx) reveal an even more dilated pore, representing a fully activated gating state. Comparisons across these states demonstrate the sequence of conformational rearrangements that underlie heat and ligand gating in TRPV1.
-
* Pan, B. F ''et all'' "Regulation of PP2Cm expression by miRNA-204/211 and miRNA-22 in mouse and human cells [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816230/]
+
 
 +
=== Significance ===
 +
 
 +
These cryo-EM structures provide a mechanistic blueprint for understanding how TRPV1 integrates thermal, chemical, and lipid-derived signals to regulate ion permeation. They reveal conserved gating transitions and define pharmacologically relevant ligand-binding pockets essential for rational drug design. The ability to visualize TRPV1 in distinct activation states enables development of selective analgesic modulators targeting neuropathic and inflammatory pain while minimizing adverse thermo-sensory effects.
 +
 
 +
=== References ===
 +
* Liao M., Cao E., Julius D., Cheng Y. (2013). Structure of the TRPV1 ion channel determined by electron cryo-microscopy. *Nature*, 504, 107–112.

Current revision

Contents

Cryo-EM Structure of the Human TRPV1 Ion Channel

Cryo-EM structure of the human TRPV1 ion channel in the apo state (Liao et al., 2013; ~3.5 Å resolution)

Drag the structure with the mouse to rotate

Introduction

The transient receptor potential vanilloid 1 (TRPV1) ion channel is a heat- and ligand-gated cation channel essential for nociception, inflammatory pain, and thermal sensitivity. Activated by capsaicin, protons, noxious heat (>42°C), and lipid mediators, TRPV1 serves as a polymodal molecular sensor in the peripheral nervous system. Because of its central role in pain signaling, TRPV1 has been a major therapeutic target for developing next-generation analgesics. Understanding its three-dimensional structure is therefore crucial for elucidating its gating mechanism and ligand recognition.

Structural Highlights

Using single-particle cryo-electron microscopy, Liao, Cao, Julius, and Cheng (2013) determined the first near-atomic structures of TRPV1 in multiple functional states, including the apo (resting), capsaicin-bound, and toxin-bound conformations. TRPV1 assembles as a homotetramer, with each subunit containing six transmembrane helices (S1–S6), a re-entrant pore loop, and extensive cytosolic ankyrin repeat domains.

The vanilloid-binding pocket—formed between the S3–S4 helices and the S4–S5 linker—was resolved in detail, explaining how capsaicin stabilizes the open conformation by pulling on the S4–S5 linker and reshaping the S6 helices to widen the pore. Structures bound to the double-knot toxin (DkTx) reveal an even more dilated pore, representing a fully activated gating state. Comparisons across these states demonstrate the sequence of conformational rearrangements that underlie heat and ligand gating in TRPV1.

Significance

These cryo-EM structures provide a mechanistic blueprint for understanding how TRPV1 integrates thermal, chemical, and lipid-derived signals to regulate ion permeation. They reveal conserved gating transitions and define pharmacologically relevant ligand-binding pockets essential for rational drug design. The ability to visualize TRPV1 in distinct activation states enables development of selective analgesic modulators targeting neuropathic and inflammatory pain while minimizing adverse thermo-sensory effects.

References

  • Liao M., Cao E., Julius D., Cheng Y. (2013). Structure of the TRPV1 ion channel determined by electron cryo-microscopy. *Nature*, 504, 107–112.
Personal tools