1bcd
From Proteopedia
X-RAY CRYSTALLOGRAPHIC STRUCTURE OF A COMPLEX BETWEEN HUMAN CARBONIC ANHYDRASE II AND A NEW TOPICAL INHIBITOR, TRIFLUOROMETHANE SULPHONAMIDE
Structural highlights
Disease[CAH2_HUMAN] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1] [2] [3] [4] [5] Function[CAH2_HUMAN] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6] [7] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedIt has recently been shown that aliphatic sulphonamides are good inhibitors of carbonic anhydrase (CA) provided that the pK of the sulphonamide is low. We have determined the structure of the complex between CAII and CF3SO2NH2 by X-ray crystallographic methods. The nitrogen of the sulphonamide is bound to the zinc ion of the enzyme in the usual manner. The other parts of the inhibitor show a different mode of binding from aromatic sulphonamides since the trifluoromethyl group is bound at the hydrophobic part of the active site instead of pointing out from the active site. It should be possible to design new inhibitors specific for the different isoenzymes, starting from the present structure. The structure of a complex between carbonic anhydrase II and a new inhibitor, trifluoromethane sulphonamide.,Hakansson K, Liljas A FEBS Lett. 1994 Aug 22;350(2-3):319-22. PMID:8070585[8] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|