1cqq
From Proteopedia
TYPE 2 RHINOVIRUS 3C PROTEASE WITH AG7088 INHIBITOR
Structural highlights
FunctionPOLG_HRV2 Capsid proteins VP1, VP2, VP3 and VP4 form a closed capsid enclosing the viral positive strand RNA genome. VP4 lies on the inner surface of the protein shell formed by VP1, VP2 and VP3. All the three latter proteins contain a beta-sheet structure called beta-barrel jelly roll. Together they form an icosahedral capsid (T=3) composed of 60 copies of each VP1, VP2, and VP3, with a diameter of approximately 300 Angstroms. VP1 is situated at the 12 fivefold axes, whereas VP2 and VP3 are located at the quasi-sixfold axes. The capsid interacts with human VLDLR to provide virion attachment to target cell. This attachment induces virion internalization predominantly through clathrin-mediated endocytosis. VP4 and VP1 subsequently undergo conformational changes leading to the formation of a pore in the endosomal membrane, thereby delivering the viral genome into the cytoplasm.[1] [2] VP0 precursor is a component of immature procapsids (By similarity).[3] [4] Protein 2A is a cysteine protease that is responsible for the cleavage between the P1 and P2 regions. It cleaves the host translation initiation factor EIF4G1, in order to shut down the capped cellular mRNA transcription.[5] [6] Protein 2B affects membrane integrity and cause an increase in membrane permeability (By similarity).[7] [8] Protein 2C associates with and induces structural rearrangements of intracellular membranes. It displays RNA-binding, nucleotide binding and NTPase activities (By similarity).[9] [10] Protein 3A, via its hydrophobic domain, serves as membrane anchor (By similarity).[11] [12] Protein 3C is a cysteine protease that generates mature viral proteins from the precursor polyprotein. In addition to its proteolytic activity, it binds to viral RNA, and thus influences viral genome replication. RNA and substrate bind co-operatively to the protease (By similarity).[13] [14] RNA-directed RNA polymerase 3D-POL replicates genomic and antigenomic RNA by recognizing replications specific signals (By similarity).[15] [16] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHuman rhinoviruses, the most important etiologic agents of the common cold, are messenger-active single-stranded monocistronic RNA viruses that have evolved a highly complex cascade of proteolytic processing events to control viral gene expression and replication. Most maturation cleavages within the precursor polyprotein are mediated by rhinovirus 3C protease (or its immediate precursor, 3CD), a cysteine protease with a trypsin-like polypeptide fold. High-resolution crystal structures of the enzyme from three viral serotypes have been used for the design and elaboration of 3C protease inhibitors representing different structural and chemical classes. Inhibitors having alpha,beta-unsaturated carbonyl groups combined with peptidyl-binding elements specific for 3C protease undergo a Michael reaction mediated by nucleophilic addition of the enzyme's catalytic Cys-147, resulting in covalent-bond formation and irreversible inactivation of the viral protease. Direct inhibition of 3C proteolytic activity in virally infected cells treated with these compounds can be inferred from dose-dependent accumulations of viral precursor polyproteins as determined by SDS/PAGE analysis of radiolabeled proteins. Cocrystal-structure-assisted optimization of 3C-protease-directed Michael acceptors has yielded molecules having extremely rapid in vitro inactivation of the viral protease, potent antiviral activity against multiple rhinovirus serotypes and low cellular toxicity. Recently, one compound in this series, AG7088, has entered clinical trials. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes.,Matthews DA, Dragovich PS, Webber SE, Fuhrman SA, Patick AK, Zalman LS, Hendrickson TF, Love RA, Prins TJ, Marakovits JT, Zhou R, Tikhe J, Ford CE, Meador JW, Ferre RA, Brown EL, Binford SL, Brothers MA, DeLisle DM, Worland ST Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11000-7. PMID:10500114[17] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|