1dcl
From Proteopedia
MCG, A LAMBDA V TYPE LIGHT-CHAIN DIMER (BENCE-JONES PROTEIN), CRYSTALLIZED FROM AMMONIUM SULFATE
Structural highlights
FunctionLV208_HUMAN V region of the variable domain of immunoglobulin light chains that participates in the antigen recognition (PubMed:24600447). Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (PubMed:20176268, PubMed:22158414). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (PubMed:17576170, PubMed:20176268).[1] [2] [3] [4] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe three-dimensional structure of an immunoglobulin light chain dimer (Mcg) crystallized in deionized water (orthorhombic form) was determined at 2.0 A resolution by phase extension and crystallographic refinement. This structure was refined side-by-side with that of the same molecule crystallized in ammonium sulfate (trigonal form). The dimer adopted markedly different structures in the two solvents. "Elbow bend" angles between pseudo 2-fold axes of rotation relating pairs of "variable" (V) and "constant" (C) domains were found to be 132 degrees in the orthorhombic form and 115 degrees in the trigonal form. Modes of association of the V domains and, to a lesser extent, the pairing interactions of the C domains were different in the two structures. Alterations in the V domain pairing were reflected in the shapes of the binding regions and in the orientations of the side-chains lining the walls of the binding sites. In the trigonal form, for instance, the V domain interface was compartmentalized into a main binding cavity and a deep pocket, whereas these spaces were continuous in the orthorhombic structure. Patterns of ordered water molecules were quite distinct in the two crystal types. In some cases, the solvent structures could be correlated with conformational changes in the proteins. For example, close contacts between V and C domains of monomer 1 of the trigonal form were not retained in orthorhombic crystals. Ordered water molecules filled the space created when the two domains moved apart. Three-dimensional structure of a light chain dimer crystallized in water. Conformational flexibility of a molecule in two crystal forms.,Ely KR, Herron JN, Harker M, Edmundson AB J Mol Biol. 1989 Dec 5;210(3):601-15. PMID:2515285[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|