Structural highlights
Function
HMOX1_RAT Heme oxygenase cleaves the heme ring at the alpha methene bridge to form biliverdin. Biliverdin is subsequently converted to bilirubin by biliverdin reductase. Under physiological conditions, the activity of heme oxygenase is highest in the spleen, where senescent erythrocytes are sequestrated and destroyed.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Heme oxygenase catalyzes the oxidative cleavage of protoheme to biliverdin, the first step of heme metabolism utilizing O(2) and NADPH. We determined the crystal structures of rat heme oxygenase-1 (HO-1)-heme and selenomethionyl HO-1-heme complexes. Heme is sandwiched between two helices with the delta-meso edge of the heme being exposed to the surface. Gly143N forms a hydrogen bond to the distal ligand of heme, OH(-). The distance between Gly143N and the ligand is shorter than that in the human HO-1-heme complex. This difference may be related to a pH-dependent change of the distal ligand of heme. Flexibility of the distal helix may control the stability of the coordination of the distal ligand to heme iron. The possible role of Gly143 in the heme oxygenase reaction is discussed.
Crystal structure of rat heme oxygenase-1 in complex with heme.,Sugishima M, Omata Y, Kakuta Y, Sakamoto H, Noguchi M, Fukuyama K FEBS Lett. 2000 Apr 7;471(1):61-6. PMID:10760513[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Sugishima M, Omata Y, Kakuta Y, Sakamoto H, Noguchi M, Fukuyama K. Crystal structure of rat heme oxygenase-1 in complex with heme. FEBS Lett. 2000 Apr 7;471(1):61-6. PMID:10760513