1dxx

From Proteopedia

Jump to: navigation, search
1dxx, resolution 2.60Å ()
Gene: DMD (Homo sapiens)
Related: 1qag
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Contents

N-TERMINAL ACTIN-BINDING DOMAIN OF HUMAN DYSTROPHIN

Publication Abstract from PubMed

BACKGROUND: Dystrophin is an essential component of skeletal muscle cells. Its N-terminal domain binds to F-actin and its C terminus binds to the dystrophin-associated glycoprotein (DAG) complex in the membrane. Dystrophin is therefore thought to serve as a link from the actin-based cytoskeleton of the muscle cell through the plasma membrane to the extracellular matrix. Pathogenic mutations in dystrophin result in Duchenne or Becker muscular dystrophy. RESULTS: The crystal structure of the dystrophin actin-binding domain (ABD) has been determined at 2.6 A resolution. The structure is an antiparallel dimer of two ABDs each comprising two calponin homology domains (CH1 and CH2) that are linked by a central alpha helix. The CH domains are both alpha-helical globular folds. Comparisons with the structures of utrophin and fimbrin ABDs reveal that the conformations of the individual CH domains are very similar to those of dystrophin but that the arrangement of the two CH domains within the ABD is altered. The dystrophin dimer reveals a change of 72 degrees in the orientation of one pair of CH1 and CH2 domains (from different monomers) relative to the other pair when compared with the utrophin dimer. The dystrophin monomer is more elongated than the fimbrin ABD. CONCLUSIONS: The dystrophin ABD structure reveals a previously uncharacterised arrangement of the CH domains within the ABD. This observation has implications for the mechanism of actin binding by dystrophin and related proteins. Examining the position of three pathogenic missense mutations within the structure suggests that they exert their effects through misfolding of the ABD, rather than through disruption of the binding to F-actin.

The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy., Norwood FL, Sutherland-Smith AJ, Keep NH, Kendrick-Jones J, Structure. 2000 May 15;8(5):481-91. PMID:10801490

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Disease

[DMD_HUMAN] Defects in DMD are the cause of Duchenne muscular dystrophy (DMD) [MIM:310200]. DMD is the most common form of muscular dystrophy; a sex-linked recessive disorder. It typically presents in boys aged 3 to 7 year as proximal muscle weakness causing waddling gait, toe-walking, lordosis, frequent falls, and difficulty in standing up and climbing up stairs. The pelvic girdle is affected first, then the shoulder girdle. Progression is steady and most patients are confined to a wheelchair by age of 10 or 12. Flexion contractures and scoliosis ultimately occur. About 50% of patients have a lower IQ than their genetic expectations would suggest. There is no treatment.[1][2][3][4] Defects in DMD are the cause of Becker muscular dystrophy (BMD) [MIM:300376]. BMD resembles DMD in hereditary and clinical features but is later in onset and more benign.[5] Defects in DMD are a cause of cardiomyopathy dilated X-linked type 3B (CMD3B) [MIM:302045]; also known as X-linked dilated cardiomyopathy (XLCM). Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.[6][7][8]

Function

[DMD_HUMAN] Anchors the extracellular matrix to the cytoskeleton via F-actin. Ligand for dystroglycan. Component of the dystrophin-associated glycoprotein complex which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the peripheral and central nervous systems and has a structural function in stabilizing the sarcolemma. Also implicated in signaling events and synaptic transmission.[9]

About this Structure

1dxx is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

Reference

  • Norwood FL, Sutherland-Smith AJ, Keep NH, Kendrick-Jones J. The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy. Structure. 2000 May 15;8(5):481-91. PMID:10801490
  1. Prior TW, Papp AC, Snyder PJ, Burghes AH, Bartolo C, Sedra MS, Western LM, Mendell JR. A missense mutation in the dystrophin gene in a Duchenne muscular dystrophy patient. Nat Genet. 1993 Aug;4(4):357-60. PMID:8401582 doi:http://dx.doi.org/10.1038/ng0893-357
  2. Prior TW, Bartolo C, Papp AC, Snyder PJ, Sedra MS, Burghes AH, Mendell JR. Identification of a missense mutation, single base deletion and a polymorphism in the dystrophin exon 16. Hum Mol Genet. 1994 Jul;3(7):1173-4. PMID:7981690
  3. Lenk U, Oexle K, Voit T, Ancker U, Hellner KA, Speer A, Hubner C. A cysteine 3340 substitution in the dystroglycan-binding domain of dystrophin associated with Duchenne muscular dystrophy, mental retardation and absence of the ERG b-wave. Hum Mol Genet. 1996 Jul;5(7):973-5. PMID:8817332
  4. Goldberg LR, Hausmanowa-Petrusewicz I, Fidzianska A, Duggan DJ, Steinberg LS, Hoffman EP. A dystrophin missense mutation showing persistence of dystrophin and dystrophin-associated proteins yet a severe phenotype. Ann Neurol. 1998 Dec;44(6):971-6. PMID:9851445 doi:10.1002/ana.410440619
  5. Eraslan S, Kayserili H, Apak MY, Kirdar B. Identification of point mutations in Turkish DMD/BMD families using multiplex-single stranded conformation analysis (SSCA). Eur J Hum Genet. 1999 Oct-Nov;7(7):765-70. PMID:10573008 doi:10.1038/sj.ejhg.5200370
  6. Ortiz-Lopez R, Li H, Su J, Goytia V, Towbin JA. Evidence for a dystrophin missense mutation as a cause of X-linked dilated cardiomyopathy. Circulation. 1997 May 20;95(10):2434-40. PMID:9170407
  7. Feng J, Yan JY, Buzin CH, Sommer SS, Towbin JA. Comprehensive mutation scanning of the dystrophin gene in patients with nonsyndromic X-linked dilated cardiomyopathy. J Am Coll Cardiol. 2002 Sep 18;40(6):1120-4. PMID:12354438
  8. Feng J, Yan J, Buzin CH, Towbin JA, Sommer SS. Mutations in the dystrophin gene are associated with sporadic dilated cardiomyopathy. Mol Genet Metab. 2002 Sep-Oct;77(1-2):119-26. PMID:12359139
  9. Haenggi T, Fritschy JM. Role of dystrophin and utrophin for assembly and function of the dystrophin glycoprotein complex in non-muscle tissue. Cell Mol Life Sci. 2006 Jul;63(14):1614-31. PMID:16710609 doi:10.1007/s00018-005-5461-0

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools