1e66

From Proteopedia

Jump to: navigation, search

STRUCTURE OF ACETYLCHOLINESTERASE COMPLEXED WITH (-)-HUPRINE X AT 2.1A RESOLUTION

Structural highlights

1e66 is a 1 chain structure with sequence from Tetronarce californica. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Ligands:HUX, NAG
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ACES_TETCF Terminates signal transduction at the neuromuscular junction by rapid hydrolysis of the acetylcholine released into the synaptic cleft. May be involved in cell-cell interactions.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Huprine X is a novel acetylcholinesterase (AChE) inhibitor, with one of the highest affinities reported for a reversible inhibitor. It is a synthetic hybrid that contains the 4-aminoquinoline substructure of one anti-Alzheimer drug, tacrine, and a carbobicyclic moiety resembling that of another AChE inhibitor, (-)-huperzine A. Cocrystallization of huprine X with Torpedo californica AChE yielded crystals whose 3D structure was determined to 2.1 A resolution. The inhibitor binds to the anionic site and also hinders access to the esteratic site. Its aromatic portion occupies the same binding site as tacrine, stacking between the aromatic rings of Trp84 and Phe330, whereas the carbobicyclic unit occupies the same binding pocket as (-)-huperzine A. Its chlorine substituent was found to lie in a hydrophobic pocket interacting with rings of the aromatic residues Trp432 and Phe330 and with the methyl groups of Met436 and Ile439. Steady-state inhibition data show that huprine X binds to human AChE and Torpedo AChE 28- and 54-fold, respectively, more tightly than tacrine. This difference stems from the fact that the aminoquinoline moiety of huprine X makes interactions similar to those made by tacrine, but additional bonds to the enzyme are made by the huperzine-like substructure and the chlorine atom. Furthermore, both tacrine and huprine X bind more tightly to Torpedo than to human AChE, suggesting that their quinoline substructures interact better with Phe330 than with Tyr337, the corresponding residue in the human AChE structure. Both (-)-huperzine A and huprine X display slow binding properties, but only binding of the former causes a peptide flip of Gly117.

3D structure of Torpedo californica acetylcholinesterase complexed with huprine X at 2.1 A resolution: kinetic and molecular dynamic correlates.,Dvir H, Wong DM, Harel M, Barril X, Orozco M, Luque FJ, Munoz-Torrero D, Camps P, Rosenberry TL, Silman I, Sussman JL Biochemistry. 2002 Mar 5;41(9):2970-81. PMID:11863435[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Loading citation details..
Citations
No citations found

See Also

References

  1. Dvir H, Wong DM, Harel M, Barril X, Orozco M, Luque FJ, Munoz-Torrero D, Camps P, Rosenberry TL, Silman I, Sussman JL. 3D structure of Torpedo californica acetylcholinesterase complexed with huprine X at 2.1 A resolution: kinetic and molecular dynamic correlates. Biochemistry. 2002 Mar 5;41(9):2970-81. PMID:11863435

Contents


PDB ID 1e66

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools