First time at Proteopedia? Click on the green links: they change the 3D image. Click and drag the molecules. Proteopedia is a 3D, interactive encyclopedia of proteins, RNA, DNA and other molecules. With a free user account, you can edit pages in Proteopedia. Visit the Main Page to learn more.

1eer

From Proteopedia

Jump to: navigation, search
1eer, resolution 1.90Å ()
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Contents

CRYSTAL STRUCTURE OF HUMAN ERYTHROPOIETIN COMPLEXED TO ITS RECEPTOR AT 1.9 ANGSTROMS

Publication Abstract from PubMed

Human erythropoietin is a haematopoietic cytokine required for the differentiation and proliferation of precursor cells into red blood cells. It activates cells by binding and orientating two cell-surface erythropoietin receptors (EPORs) which trigger an intracellular phosphorylation cascade. The half-maximal response in a cellular proliferation assay is evoked at an erythropoietin concentration of 10 pM, 10(-2) of its Kd value for erythropoietin-EPOR binding site 1 (Kd approximately equal to nM), and 10(-5) of the Kd for erythropoietin-EPOR binding site 2 (Kd approximately equal to 1 microM). Overall half-maximal binding (IC50) of cell-surface receptors is produced with approximately 0.18 nM erythropoietin, indicating that only approximately 6% of the receptors would be bound in the presence of 10 pM erythropoietin. Other effective erythropoietin-mimetic ligands that dimerize receptors can evoke the same cellular responses but much less efficiently, requiring concentrations close to their Kd values (approximately 0.1 microM). The crystal structure of erythropoietin complexed to the extracellular ligand-binding domains of the erythropoietin receptor, determined at 1.9 A from two crystal forms, shows that erythropoietin imposes a unique 120 degrees angular relationship and orientation that is responsible for optimal signalling through intracellular kinase pathways.

Efficiency of signalling through cytokine receptors depends critically on receptor orientation., Syed RS, Reid SW, Li C, Cheetham JC, Aoki KH, Liu B, Zhan H, Osslund TD, Chirino AJ, Zhang J, Finer-Moore J, Elliott S, Sitney K, Katz BA, Matthews DJ, Wendoloski JJ, Egrie J, Stroud RM, Nature. 1998 Oct 1;395(6701):511-6. PMID:9774108

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Disease

[EPO_HUMAN] Genetic variation in EPO is associated with susceptbility to microvascular complications of diabetes type 2 (MVCD2) [MIM:612623]. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis. [EPOR_HUMAN] Defects in EPOR are the cause of familial erythrocytosis type 1 (ECYT1) [MIM:133100]. ECYT1 is an autosomal dominant disorder characterized by increased serum red blood cell mass, elevated hemoglobin and hematocrit, hypersensitivity of erythroid progenitors to erythropoietin, erythropoietin low serum levels, and no increase in platelets nor leukocytes. It has a relatively benign course and does not progress to leukemia.[1][2][3]

Function

[EPO_HUMAN] Erythropoietin is the principal hormone involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. [EPOR_HUMAN] Receptor for erythropoietin. Mediates erythropoietin-induced erythroblast proliferation and differentiation. Upon EPO stimulation, EPOR dimerizes triggering the JAK2/STAT5 signaling cascade. In some cell types, can also activate STAT1 and STAT3. May also activate the LYN tyrosine kinase. Isoform EPOR-T acts as a dominant-negative receptor of EPOR-mediated signaling.

About this Structure

1eer is a 3 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

Reference

  • Syed RS, Reid SW, Li C, Cheetham JC, Aoki KH, Liu B, Zhan H, Osslund TD, Chirino AJ, Zhang J, Finer-Moore J, Elliott S, Sitney K, Katz BA, Matthews DJ, Wendoloski JJ, Egrie J, Stroud RM. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature. 1998 Oct 1;395(6701):511-6. PMID:9774108 doi:http://dx.doi.org/10.1038/26773
  • Hill EE, Morea V, Chothia C. Sequence conservation in families whose members have little or no sequence similarity: the four-helical cytokines and cytochromes. J Mol Biol. 2002 Sep 6;322(1):205-33. PMID:12215425
  1. de la Chapelle A, Traskelin AL, Juvonen E. Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4495-9. PMID:8506290
  2. Sokol L, Prchal JF, D'Andrea A, Rado TA, Prchal JT. Mutation in the negative regulatory element of the erythropoietin receptor gene in a case of sporadic primary polycythemia. Exp Hematol. 1994 May;22(5):447-53. PMID:8174675
  3. Le Couedic JP, Mitjavila MT, Villeval JL, Feger F, Gobert S, Mayeux P, Casadevall N, Vainchenker W. Missense mutation of the erythropoietin receptor is a rare event in human erythroid malignancies. Blood. 1996 Feb 15;87(4):1502-11. PMID:8608241

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools