1eui
From Proteopedia
ESCHERICHIA COLI URACIL-DNA GLYCOSYLASE COMPLEX WITH URACIL-DNA GLYCOSYLASE INHIBITOR PROTEIN
Structural highlights
FunctionUNG_ECOLI Excises uracil residues from the DNA which can arise as a result of misincorporation of dUMP residues by DNA polymerase or due to deamination of cytosine.[HAMAP-Rule:MF_00148] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedUracil-DNA glycosylase (UDG), a key highly conserved DNA repair enzyme involved in uracil excision repair, was discovered in Escherichia coli . The Bacillus subtilis bacteriophage, PBS-1 and PBS-2, which contain dUMP residues in their DNA, express a UDG inhibitor protein, Ugi which binds to UDG very tightly to form a physiologically irreversible complex. The X-ray analysis of the E. coli UDG ( Ec UDG)-Ugi complex at 3.2 A resolution, leads to the first structure elucidation of a bacterial UDG molecule. This structure is similar to the enzymes from human and viral sources. A comparison of the available structures involving UDG permits the delineation of the constant and the variable regions of the molecule. Structural comparison and mutational analysis also indicate that the mode of action of the enzyme from these sources are the same. The crystal structure shows a remarkable spatial conservation of the active site residues involved in DNA binding in spite of significant differences in the structure of the enzyme-inhibitor complex, in comparison with those from the mammalian and viral sources. Ec UDG could serve as a prototype for UDGs from pathogenic prokaryotes, and provide a framework for possible drug development against such pathogens with emphasis on features of the molecule that differ from those in the human enzyme. X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG.,Ravishankar R, Bidya Sagar M, Roy S, Purnapatre K, Handa P, Varshney U, Vijayan M Nucleic Acids Res. 1998 Nov 1;26(21):4880-7. PMID:9776748[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|