1g7a
From Proteopedia
1.2 A structure of T3R3 human insulin at 100 K
Structural highlights
DiseaseINS_HUMAN Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:176730.[1] [2] [3] [4] Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:125852. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.[5] Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:606176. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.[6] [7] Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:613370. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.[8] [9] [10] FunctionINS_HUMAN Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe structure of T(3)R(3) hexameric human insulin has been determined at 100 K from two different crystals at 1.2 and 1.3 A resolution and refined to residuals of 0.169 and 0.176, respectively. Owing to a phase change, the c axis is double its room-temperature value and the asymmetric unit contains two independent TR(f) insulin dimers. Compared with the orientation in the room-temperature structure, one dimer undergoes a rotation about the c axis of -5 degrees, while the second is rotated +4 degrees. A superposition of the backbone atoms of the two independent dimers shows that the C(alpha) atoms of five residues within the R(f)-state monomers are displaced by more than 1.0 A; smaller displacements are observed for the T-state monomers. Four zinc ions lie on the crystallographic threefold axis and each forms bonds to three symmetry-related HisB10 N(varepsilon2) atoms from the T- and R(f)-state trimers. While three of the zinc ions are tetrahedrally coordinated with a chloride ion completing the coordination sphere, mixed tetrahedral/octahedral coordination is observed for one of the T-state zinc ions. The three symmetry-related "phenolic binding sites" in one hexamer contain water molecules and a glycerol molecule, but the same sites in the second hexamer are occupied by a zinc ion coordinated to an alternate conformation of HisB10, a symmetry-related HisB5 and two chloride ions. Two additional and partially occupied zinc ion sites are observed at the interface between the two independent dimers. One zinc ion is coordinated by a T-state HisB5 of one dimer, an R-state HisB5 of the second dimer and two water molecules; the second zinc ion is coordinated by an alternate side-chain conformation of the T-state HisB5 and three water molecules. The carboxyl group of one GluB13 side chain, which exists in two discrete conformations, appears to be protonated, because short contacts exist to a second carboxyl group or to a carbonyl O atom. Phase changes in T(3)R(3)(f) human insulin: temperature or pressure induced?,Smith GD, Pangborn WA, Blessing RH Acta Crystallogr D Biol Crystallogr. 2001 Aug;57(Pt 8):1091-100. Epub 2001, Jul 23. PMID:11468392[11] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|