1ghq

From Proteopedia

Jump to: navigation, search
1ghq, resolution 2.04Å ()
Ligands: ,
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Contents

CR2-C3D COMPLEX STRUCTURE

Publication Abstract from PubMed

Complement receptor 2 (CR2/CD21) is an important receptor that amplifies B lymphocyte activation by bridging the innate and adaptive immune systems. CR2 ligands include complement C3d and Epstein-Barr virus glycoprotein 350/220. We describe the x-ray structure of this CR2 domain in complex with C3d at 2.0 angstroms. The structure reveals extensive main chain interactions between C3d and only one short consensus repeat (SCR) of CR2 and substantial SCR side-side packing. These results provide a detailed understanding of receptor-ligand interactions in this protein family and reveal potential target sites for molecular drug design.

Structure of complement receptor 2 in complex with its C3d ligand., Szakonyi G, Guthridge JM, Li D, Young K, Holers VM, Chen XS, Science. 2001 Jun 1;292(5522):1725-8. PMID:11387479

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Disease

[CO3_HUMAN] Defects in C3 are the cause of complement component 3 deficiency (C3D) [MIM:613779]. A rare defect of the complement classical pathway. Patients develop recurrent, severe, pyogenic infections because of ineffective opsonization of pathogens. Some patients may also develop autoimmune disorders, such as arthralgia and vasculitic rashes, lupus-like syndrome and membranoproliferative glomerulonephritis.[1][2][3][4][5][:] Genetic variation in C3 is associated with susceptibility to age-related macular degeneration type 9 (ARMD9) [MIM:611378]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the retinal pigment epithelium and within an elastin-containing structure known as Bruch membrane.[6][7] Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atypical type 5 (AHUS5) [MIM:612925]. An atypical form of hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulatory factors in the complement cascade system. Other genes may play a role in modifying the phenotype.[8][9][10] Note=Increased levels of C3 and its cleavage product ASP, are associated with obesity, diabetes and coronary heart disease. Short-term endurance training reduces baseline ASP levels and subsequently fat storage.[11] [CR2_HUMAN] Genetic variations in CR2 are associated with susceptibility to systemic lupus erythematosus type 9 (SLEB9) [MIM:610927]. Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a complex genetic basis. SLE is an inflammatory, and often febrile multisystemic disorder of connective tissue characterized principally by involvement of the skin, joints, kidneys, and serosal membranes. It is thought to represent a failure of the regulatory mechanisms of the autoimmune system.[12] Defects in CR2 are the cause of immunodeficiency, common variable, type 7 (CVID7) [MIM:614699]. A primary immunodeficiency characterized by antibody deficiency, hypogammaglobulinemia, recurrent bacterial infections and an inability to mount an antibody response to antigen. The defect results from a failure of B-cell differentiation and impaired secretion of immunoglobulins; the numbers of circulating B cells is usually in the normal range, but can be low.[13]

Function

[CO3_HUMAN] C3 plays a central role in the activation of the complement system. Its processing by C3 convertase is the central reaction in both classical and alternative complement pathways. After activation C3b can bind covalently, via its reactive thioester, to cell surface carbohydrates or immune aggregates.[14][15][16][17][18][19][20][21] Derived from proteolytic degradation of complement C3, C3a anaphylatoxin is a mediator of local inflammatory process. It induces the contraction of smooth muscle, increases vascular permeability and causes histamine release from mast cells and basophilic leukocytes.[22][23][24][25][26][27][28][29] Acylation stimulating protein (ASP): adipogenic hormone that stimulates triglyceride (TG) synthesis and glucose transport in adipocytes, regulating fat storage and playing a role in postprandial TG clearance. Appears to stimulate TG synthesis via activation of the PLC, MAPK and AKT signaling pathways. Ligand for GPR77. Promotes the phosphorylation, ARRB2-mediated internalization and recycling of GPR77.[30][31][32][33][34][35][36][37] [CR2_HUMAN] Receptor for complement C3Dd, for the Epstein-Barr virus on human B-cells and T-cells and for HNRPU. Participates in B lymphocytes activation.[38]

About this Structure

1ghq is a 3 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

Reference

  • Szakonyi G, Guthridge JM, Li D, Young K, Holers VM, Chen XS. Structure of complement receptor 2 in complex with its C3d ligand. Science. 2001 Jun 1;292(5522):1725-8. PMID:11387479 doi:10.1126/science.1059118
  1. Onat A, Hergenc G, Can G, Kaya Z, Yuksel H. Serum complement C3: a determinant of cardiometabolic risk, additive to the metabolic syndrome, in middle-aged population. Metabolism. 2010 May;59(5):628-34. doi: 10.1016/j.metabol.2009.09.006. Epub 2009 , Nov 14. PMID:19913840 doi:10.1016/j.metabol.2009.09.006
  2. Nagar B, Jones RG, Diefenbach RJ, Isenman DE, Rini JM. X-ray crystal structure of C3d: a C3 fragment and ligand for complement receptor 2. Science. 1998 May 22;280(5367):1277-81. PMID:9596584
  3. Szakonyi G, Guthridge JM, Li D, Young K, Holers VM, Chen XS. Structure of complement receptor 2 in complex with its C3d ligand. Science. 2001 Jun 1;292(5522):1725-8. PMID:11387479 doi:10.1126/science.1059118
  4. Gilbert HE, Eaton JT, Hannan JP, Holers VM, Perkins SJ. Solution structure of the complex between CR2 SCR 1-2 and C3d of human complement: an X-ray scattering and sedimentation modelling study. J Mol Biol. 2005 Feb 25;346(3):859-73. Epub 2005 Jan 12. PMID:15713468 doi:10.1016/j.jmb.2004.12.006
  5. Singer L, Whitehead WT, Akama H, Katz Y, Fishelson Z, Wetsel RA. Inherited human complement C3 deficiency. An amino acid substitution in the beta-chain (ASP549 to ASN) impairs C3 secretion. J Biol Chem. 1994 Nov 11;269(45):28494-9. PMID:7961791
  6. Onat A, Hergenc G, Can G, Kaya Z, Yuksel H. Serum complement C3: a determinant of cardiometabolic risk, additive to the metabolic syndrome, in middle-aged population. Metabolism. 2010 May;59(5):628-34. doi: 10.1016/j.metabol.2009.09.006. Epub 2009 , Nov 14. PMID:19913840 doi:10.1016/j.metabol.2009.09.006
  7. Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H, Clayton DG, Hayward C, Morgan J, Wright AF, Armbrecht AM, Dhillon B, Deary IJ, Redmond E, Bird AC, Moore AT. Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med. 2007 Aug 9;357(6):553-61. Epub 2007 Jul 18. PMID:17634448 doi:NEJMoa072618
  8. Onat A, Hergenc G, Can G, Kaya Z, Yuksel H. Serum complement C3: a determinant of cardiometabolic risk, additive to the metabolic syndrome, in middle-aged population. Metabolism. 2010 May;59(5):628-34. doi: 10.1016/j.metabol.2009.09.006. Epub 2009 , Nov 14. PMID:19913840 doi:10.1016/j.metabol.2009.09.006
  9. Fremeaux-Bacchi V, Miller EC, Liszewski MK, Strain L, Blouin J, Brown AL, Moghal N, Kaplan BS, Weiss RA, Lhotta K, Kapur G, Mattoo T, Nivet H, Wong W, Gie S, Hurault de Ligny B, Fischbach M, Gupta R, Hauhart R, Meunier V, Loirat C, Dragon-Durey MA, Fridman WH, Janssen BJ, Goodship TH, Atkinson JP. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood. 2008 Dec 15;112(13):4948-52. doi: 10.1182/blood-2008-01-133702. Epub 2008 , Sep 16. PMID:18796626 doi:10.1182/blood-2008-01-133702
  10. Maga TK, Nishimura CJ, Weaver AE, Frees KL, Smith RJ. Mutations in alternative pathway complement proteins in American patients with atypical hemolytic uremic syndrome. Hum Mutat. 2010 Jun;31(6):E1445-60. doi: 10.1002/humu.21256. PMID:20513133 doi:10.1002/humu.21256
  11. Onat A, Hergenc G, Can G, Kaya Z, Yuksel H. Serum complement C3: a determinant of cardiometabolic risk, additive to the metabolic syndrome, in middle-aged population. Metabolism. 2010 May;59(5):628-34. doi: 10.1016/j.metabol.2009.09.006. Epub 2009 , Nov 14. PMID:19913840 doi:10.1016/j.metabol.2009.09.006
  12. Wu H, Boackle SA, Hanvivadhanakul P, Ulgiati D, Grossman JM, Lee Y, Shen N, Abraham LJ, Mercer TR, Park E, Hebert LA, Rovin BH, Birmingham DJ, Chang DM, Chen CJ, McCurdy D, Badsha HM, Thong BY, Chng HH, Arnett FC, Wallace DJ, Yu CY, Hahn BH, Cantor RM, Tsao BP. Association of a common complement receptor 2 haplotype with increased risk of systemic lupus erythematosus. Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3961-6. Epub 2007 Feb 22. PMID:17360460 doi:0609101104
  13. Thiel J, Kimmig L, Salzer U, Grudzien M, Lebrecht D, Hagena T, Draeger R, Volxen N, Bergbreiter A, Jennings S, Gutenberger S, Aichem A, Illges H, Hannan JP, Kienzler AK, Rizzi M, Eibel H, Peter HH, Warnatz K, Grimbacher B, Rump JA, Schlesier M. Genetic CD21 deficiency is associated with hypogammaglobulinemia. J Allergy Clin Immunol. 2012 Mar;129(3):801-810.e6. doi:, 10.1016/j.jaci.2011.09.027. Epub 2011 Oct 27. PMID:22035880 doi:10.1016/j.jaci.2011.09.027
  14. Baldo A, Sniderman AD, St-Luce S, Avramoglu RK, Maslowska M, Hoang B, Monge JC, Bell A, Mulay S, Cianflone K. The adipsin-acylation stimulating protein system and regulation of intracellular triglyceride synthesis. J Clin Invest. 1993 Sep;92(3):1543-7. PMID:8376604 doi:http://dx.doi.org/10.1172/JCI116733
  15. Cianflone KM, Sniderman AD, Walsh MJ, Vu HT, Gagnon J, Rodriguez MA. Purification and characterization of acylation stimulating protein. J Biol Chem. 1989 Jan 5;264(1):426-30. PMID:2909530
  16. Tao Y, Cianflone K, Sniderman AD, Colby-Germinario SP, Germinario RJ. Acylation-stimulating protein (ASP) regulates glucose transport in the rat L6 muscle cell line. Biochim Biophys Acta. 1997 Feb 18;1344(3):221-9. PMID:9059512
  17. Saleh J, Summers LK, Cianflone K, Fielding BA, Sniderman AD, Frayn KN. Coordinated release of acylation stimulating protein (ASP) and triacylglycerol clearance by human adipose tissue in vivo in the postprandial period. J Lipid Res. 1998 Apr;39(4):884-91. PMID:9555951
  18. Murray I, Kohl J, Cianflone K. Acylation-stimulating protein (ASP): structure-function determinants of cell surface binding and triacylglycerol synthetic activity. Biochem J. 1999 Aug 15;342 ( Pt 1):41-8. PMID:10432298
  19. Kalant D, MacLaren R, Cui W, Samanta R, Monk PN, Laporte SA, Cianflone K. C5L2 is a functional receptor for acylation-stimulating protein. J Biol Chem. 2005 Jun 24;280(25):23936-44. Epub 2005 Apr 14. PMID:15833747 doi:10.1074/jbc.M406921200
  20. Maslowska M, Legakis H, Assadi F, Cianflone K. Targeting the signaling pathway of acylation stimulating protein. J Lipid Res. 2006 Mar;47(3):643-52. Epub 2005 Dec 6. PMID:16333141 doi:10.1194/jlr.M500500-JLR200
  21. Cui W, Simaan M, Laporte S, Lodge R, Cianflone K. C5a- and ASP-mediated C5L2 activation, endocytosis and recycling are lost in S323I-C5L2 mutation. Mol Immunol. 2009 Sep;46(15):3086-98. Epub 2009 Jul 16. PMID:19615750 doi:S0161-5890(09)00421-0
  22. Baldo A, Sniderman AD, St-Luce S, Avramoglu RK, Maslowska M, Hoang B, Monge JC, Bell A, Mulay S, Cianflone K. The adipsin-acylation stimulating protein system and regulation of intracellular triglyceride synthesis. J Clin Invest. 1993 Sep;92(3):1543-7. PMID:8376604 doi:http://dx.doi.org/10.1172/JCI116733
  23. Cianflone KM, Sniderman AD, Walsh MJ, Vu HT, Gagnon J, Rodriguez MA. Purification and characterization of acylation stimulating protein. J Biol Chem. 1989 Jan 5;264(1):426-30. PMID:2909530
  24. Tao Y, Cianflone K, Sniderman AD, Colby-Germinario SP, Germinario RJ. Acylation-stimulating protein (ASP) regulates glucose transport in the rat L6 muscle cell line. Biochim Biophys Acta. 1997 Feb 18;1344(3):221-9. PMID:9059512
  25. Saleh J, Summers LK, Cianflone K, Fielding BA, Sniderman AD, Frayn KN. Coordinated release of acylation stimulating protein (ASP) and triacylglycerol clearance by human adipose tissue in vivo in the postprandial period. J Lipid Res. 1998 Apr;39(4):884-91. PMID:9555951
  26. Murray I, Kohl J, Cianflone K. Acylation-stimulating protein (ASP): structure-function determinants of cell surface binding and triacylglycerol synthetic activity. Biochem J. 1999 Aug 15;342 ( Pt 1):41-8. PMID:10432298
  27. Kalant D, MacLaren R, Cui W, Samanta R, Monk PN, Laporte SA, Cianflone K. C5L2 is a functional receptor for acylation-stimulating protein. J Biol Chem. 2005 Jun 24;280(25):23936-44. Epub 2005 Apr 14. PMID:15833747 doi:10.1074/jbc.M406921200
  28. Maslowska M, Legakis H, Assadi F, Cianflone K. Targeting the signaling pathway of acylation stimulating protein. J Lipid Res. 2006 Mar;47(3):643-52. Epub 2005 Dec 6. PMID:16333141 doi:10.1194/jlr.M500500-JLR200
  29. Cui W, Simaan M, Laporte S, Lodge R, Cianflone K. C5a- and ASP-mediated C5L2 activation, endocytosis and recycling are lost in S323I-C5L2 mutation. Mol Immunol. 2009 Sep;46(15):3086-98. Epub 2009 Jul 16. PMID:19615750 doi:S0161-5890(09)00421-0
  30. Baldo A, Sniderman AD, St-Luce S, Avramoglu RK, Maslowska M, Hoang B, Monge JC, Bell A, Mulay S, Cianflone K. The adipsin-acylation stimulating protein system and regulation of intracellular triglyceride synthesis. J Clin Invest. 1993 Sep;92(3):1543-7. PMID:8376604 doi:http://dx.doi.org/10.1172/JCI116733
  31. Cianflone KM, Sniderman AD, Walsh MJ, Vu HT, Gagnon J, Rodriguez MA. Purification and characterization of acylation stimulating protein. J Biol Chem. 1989 Jan 5;264(1):426-30. PMID:2909530
  32. Tao Y, Cianflone K, Sniderman AD, Colby-Germinario SP, Germinario RJ. Acylation-stimulating protein (ASP) regulates glucose transport in the rat L6 muscle cell line. Biochim Biophys Acta. 1997 Feb 18;1344(3):221-9. PMID:9059512
  33. Saleh J, Summers LK, Cianflone K, Fielding BA, Sniderman AD, Frayn KN. Coordinated release of acylation stimulating protein (ASP) and triacylglycerol clearance by human adipose tissue in vivo in the postprandial period. J Lipid Res. 1998 Apr;39(4):884-91. PMID:9555951
  34. Murray I, Kohl J, Cianflone K. Acylation-stimulating protein (ASP): structure-function determinants of cell surface binding and triacylglycerol synthetic activity. Biochem J. 1999 Aug 15;342 ( Pt 1):41-8. PMID:10432298
  35. Kalant D, MacLaren R, Cui W, Samanta R, Monk PN, Laporte SA, Cianflone K. C5L2 is a functional receptor for acylation-stimulating protein. J Biol Chem. 2005 Jun 24;280(25):23936-44. Epub 2005 Apr 14. PMID:15833747 doi:10.1074/jbc.M406921200
  36. Maslowska M, Legakis H, Assadi F, Cianflone K. Targeting the signaling pathway of acylation stimulating protein. J Lipid Res. 2006 Mar;47(3):643-52. Epub 2005 Dec 6. PMID:16333141 doi:10.1194/jlr.M500500-JLR200
  37. Cui W, Simaan M, Laporte S, Lodge R, Cianflone K. C5a- and ASP-mediated C5L2 activation, endocytosis and recycling are lost in S323I-C5L2 mutation. Mol Immunol. 2009 Sep;46(15):3086-98. Epub 2009 Jul 16. PMID:19615750 doi:S0161-5890(09)00421-0
  38. Barel M, Balbo M, Gauffre A, Frade R. Binding sites of the Epstein-Barr virus and C3d receptor (CR2, CD21) for its three intracellular ligands, the p53 anti-oncoprotein, the p68 calcium binding protein and the nuclear p120 ribonucleoprotein. Mol Immunol. 1995 Apr;32(6):389-97. PMID:7753047

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools