1hxj
From Proteopedia
CRYSTAL STRUCTURE OF THE MAIZE ZM-P60.1 BETA-GLUCOSIDASE
Structural highlights
FunctionHGGL1_MAIZE Is implicated in many functions such as ABA metabolism, hydrolysis of conjugated gibberellins, conversion of storage forms of cytokinins to active forms. Also acts in defense of young plant parts against pests via the production of hydroxamic acids from hydroxamic acid glucosides. Enzymatic activity is highly correlated with plant growth. The preferred substrate is DIMBOA-beta-D-glucoside. Hydrolyzes the chromogenic substrate 6-bromo-2-naphthyl-beta-D-glucoside (6BNGlc) and various artificial aryl beta-glucosides. No activity with cellobiose, arbutin, gentiobiose, linamarin or dhurrin as substrates.[1] [2] [3] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe maize (Zea mays) beta-glucosidase Zm-p60.1 has been implicated in regulation of plant development by the targeted release of free cytokinins from cytokinin-O-glucosides, their inactive storage forms. The crystal structure of the wild-type enzyme was solved at 2.05-A resolution, allowing molecular docking analysis to be conducted. This indicated that the enzyme specificity toward substrates with aryl aglycones is determined by aglycone aromatic system stacking with W373, and interactions with edges of F193, F200, and F461 located opposite W373 in a slot-like aglycone-binding site. These aglycone-active site interactions recently were hypothesized to determine substrate specificity in inactive enzyme substrate complexes of ZM-Glu1, an allozyme of Zm-p60.1. Here, we test this hypothesis by kinetic analysis of F193I/Y/W mutants. The decreased K(m) of all mutants confirmed the involvement of F193 in determining enzyme affinity toward substrates with an aromatic aglycone. It was unexpected that a 30-fold decrease in k(cat) was found in F193I mutant compared with the wild type. Kinetic analysis and computer modeling demonstrated that the F193-aglycone-W373 interaction not only contributes to aglycone recognition as hypothesized previously but also codetermines catalytic rate by fixing the glucosidic bond in an orientation favorable for attack by the catalytic pair, E186 and E401. The catalytic pair, assigned initially by their location in the structure, was confirmed by kinetic analysis of E186D/Q and E401D/Q mutants. It was unexpected that the E401D as well as C205S and C211S mutations dramatically impaired the assembly of a catalysis-competent homodimer, suggesting novel links between the active site structure and dimer formation. Insights into the functional architecture of the catalytic center of a maize beta-glucosidase Zm-p60.1.,Zouhar J, Vevodova J, Marek J, Damborsky J, Su XD, Brzobohaty B Plant Physiol. 2001 Nov;127(3):973-85. PMID:11706179[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|