From Proteopedia

Jump to: navigation, search
1kf9, resolution 2.60Å ()
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml



Publication Abstract from PubMed

The structure of the ternary complex between the phage display- optimized, high-affinity Site 1 variant of human growth hormone (hGH) and two copies of the extracellular domain (ECD) of the hGH receptor (hGHR) has been determined at 2.6 A resolution. There are widespread and significant structural differences compared to the wild-type ternary hGH hGHR complex. The hGH variant (hGH(v)) contains 15 Site 1 mutations and binds>10(2) tighter to the hGHR ECD (hGH(R1)) at Site 1. It is biologically active and specific to hGHR. The hGH(v) Site 1 interface is somewhat smaller and 20% more hydrophobic compared to the wild-type (wt) counterpart. Of the ten hormone-receptor H-bonds in the site, only one is the same as in the wt complex. Additionally, several regions of hGH(v) structure move up to 9A in forming the interface. The contacts between the C-terminal domains of two receptor ECDs (hGH(R1)- hGH(R2)) are conserved; however, the large changes in Site 1 appear to cause global changes in the domains of hGH(R1) that affect the hGH(v)-hGH(R2) interface indirectly. This coupling is manifested by large changes in the conformation of groups participating in the Site 2 interaction and results in a structure for the site that is reorganized extensively. The hGH(v)- hGH(R2) interface contains seven H-bonds, only one of which is found in the wt complex. Several groups on hGH(v) and hGH(R2) undergo conformational changes of up to 8 A. Asp116 of hGH(v) plays a central role in the reorganization of Site 2 by forming two new H-bonds to the side-chains of Trp104(R2) and Trp169(R2), which are the key binding determinants of the receptor. The fact that a different binding solution is possible for Site 2, where there were no mutations or binding selection pressures, indicates that the structural elements found in these molecules possess an inherent functional plasticity that enables them to bind to a wide variety of binding surfaces.

Structure of a phage display-derived variant of human growth hormone complexed to two copies of the extracellular domain of its receptor: evidence for strong structural coupling between receptor binding sites., Schiffer C, Ultsch M, Walsh S, Somers W, de Vos AM, Kossiakoff A, J Mol Biol. 2002 Feb 15;316(2):277-89. PMID:11851338

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.


[GHR_HUMAN] Defects in GHR are a cause of Laron syndrome (LARS) [MIM:262500]. A severe form of growth hormone insensitivity characterized by growth impairment, short stature, dysfunctional growth hormone receptor, and failure to generate insulin-like growth factor I in response to growth hormone.[1][2][3][4][5][6][7][8][9][10] Defects in GHR may be a cause of idiopathic short stature autosomal (ISSA) [MIM:604271]. Short stature is defined by a subnormal rate of growth.[11]


[GHR_HUMAN] Receptor for pituitary gland growth hormone involved in regulating postnatal body growth. On ligand binding, couples to the JAK2/STAT5 pathway (By similarity). The soluble form (GHBP) acts as a reservoir of growth hormone in plasma and may be a modulator/inhibitor of GH signaling. Isoform 2 up-regulates the production of GHBP and acts as a negative inhibitor of GH signaling.

About this Structure

1kf9 is a 6 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.


  • Schiffer C, Ultsch M, Walsh S, Somers W, de Vos AM, Kossiakoff A. Structure of a phage display-derived variant of human growth hormone complexed to two copies of the extracellular domain of its receptor: evidence for strong structural coupling between receptor binding sites. J Mol Biol. 2002 Feb 15;316(2):277-89. PMID:11851338 doi:10.1006/jmbi.2001.5348
  1. Amselem S, Duquesnoy P, Attree O, Novelli G, Bousnina S, Postel-Vinay MC, Goossens M. Laron dwarfism and mutations of the growth hormone-receptor gene. N Engl J Med. 1989 Oct 12;321(15):989-95. PMID:2779634
  2. Kou K, Lajara R, Rotwein P. Amino acid substitutions in the intracellular part of the growth hormone receptor in a patient with the Laron syndrome. J Clin Endocrinol Metab. 1993 Jan;76(1):54-9. PMID:8421103
  3. Amselem S, Duquesnoy P, Duriez B, Dastot F, Sobrier ML, Valleix S, Goossens M. Spectrum of growth hormone receptor mutations and associated haplotypes in Laron syndrome. Hum Mol Genet. 1993 Apr;2(4):355-9. PMID:8504296
  4. Edery M, Rozakis-Adcock M, Goujon L, Finidori J, Levi-Meyrueis C, Paly J, Djiane J, Postel-Vinay MC, Kelly PA. Lack of hormone binding in COS-7 cells expressing a mutated growth hormone receptor found in Laron dwarfism. J Clin Invest. 1993 Mar;91(3):838-44. PMID:8450064 doi:http://dx.doi.org/10.1172/JCI116304
  5. Duquesnoy P, Sobrier ML, Duriez B, Dastot F, Buchanan CR, Savage MO, Preece MA, Craescu CT, Blouquit Y, Goossens M, et al.. A single amino acid substitution in the exoplasmic domain of the human growth hormone (GH) receptor confers familial GH resistance (Laron syndrome) with positive GH-binding activity by abolishing receptor homodimerization. EMBO J. 1994 Mar 15;13(6):1386-95. PMID:8137822
  6. Sobrier ML, Dastot F, Duquesnoy P, Kandemir N, Yordam N, Goossens M, Amselem S. Nine novel growth hormone receptor gene mutations in patients with Laron syndrome. J Clin Endocrinol Metab. 1997 Feb;82(2):435-7. PMID:9024232
  7. Walker JL, Crock PA, Behncken SN, Rowlinson SW, Nicholson LM, Boulton TJ, Waters MJ. A novel mutation affecting the interdomain link region of the growth hormone receptor in a Vietnamese girl, and response to long-term treatment with recombinant human insulin-like growth factor-I and luteinizing hormone-releasing hormone analogue. J Clin Endocrinol Metab. 1998 Jul;83(7):2554-61. PMID:9661642
  8. Wojcik J, Berg MA, Esposito N, Geffner ME, Sakati N, Reiter EO, Dower S, Francke U, Postel-Vinay MC, Finidori J. Four contiguous amino acid substitutions, identified in patients with Laron syndrome, differently affect the binding affinity and intracellular trafficking of the growth hormone receptor. J Clin Endocrinol Metab. 1998 Dec;83(12):4481-9. PMID:9851797
  9. Enberg B, Luthman H, Segnestam K, Ritzen EM, Sundstrom M, Norstedt G. Characterisation of novel missense mutations in the GH receptor gene causing severe growth retardation. Eur J Endocrinol. 2000 Jul;143(1):71-6. PMID:10870033
  10. Jorge AA, Souza SC, Arnhold IJ, Mendonca BB. The first homozygous mutation (S226I) in the highly-conserved WSXWS-like motif of the GH receptor causing Laron syndrome: supression of GH secretion by GnRH analogue therapy not restored by dihydrotestosterone administration. Clin Endocrinol (Oxf). 2004 Jan;60(1):36-40. PMID:14678285
  11. Goddard AD, Covello R, Luoh SM, Clackson T, Attie KM, Gesundheit N, Rundle AC, Wells JA, Carlsson LM. Mutations of the growth hormone receptor in children with idiopathic short stature. The Growth Hormone Insensitivity Study Group. N Engl J Med. 1995 Oct 26;333(17):1093-8. PMID:7565946

Proteopedia Page Contributors and Editors (what is this?)


Personal tools