1ocb
From Proteopedia
Structure of the wild-type cellobiohydrolase Cel6A from Humicolas insolens in complex with a fluorescent substrate
Structural highlights
FunctionGUX6_HUMIN Plays a central role in the recycling of plant biomass. The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose.[1] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe enzymatic digestion of cellulose entails intimate involvement of cellobiohydrolases, whose characteristic active-center tunnel contributes to a processive degradation of the polysaccharide. The cellobiohydrolase Cel6A displays an active site within a tunnel formed by two extended loops, which are known to open and close in response to ligand binding. Here we present five structures of wild-type and mutant forms of Cel6A from Humicola insolens in complex with nonhydrolyzable thio-oligosaccharides, at resolutions from 1.7-1.1 A, dissecting the structural accommodation of a processing substrate chain through the active center during hydrolysis. Movement of ligand is facilitated by extensive solvent-mediated interactions and through flexibility in the hydrophobic surfaces provided by a sheath of tryptophan residues. Structural basis for ligand binding and processivity in cellobiohydrolase Cel6A from Humicola insolens.,Varrot A, Frandsen TP, von Ossowski I, Boyer V, Cottaz S, Driguez H, Schulein M, Davies GJ Structure. 2003 Jul;11(7):855-64. PMID:12842048[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|