1rpy
From Proteopedia
CRYSTAL STRUCTURE OF THE DIMERIC SH2 DOMAIN OF APS
Structural highlights
FunctionSH2B2_RAT Adapter protein for several members of the tyrosine kinase receptor family. Involved in multiple signaling pathways. Binds to EPOR and suppresses EPO-induced STAT5 activation, possibly through a masking effect on STAT5 docking sites in EPOR. Suppresses PDGF-induced mitogenesis (By similarity). Involved in stimulation of glucose uptake by insulin. Involved in coupling from immunoreceptor to Ras signaling. Acts as a negative regulator of cytokine signaling in collaboration with CBL. Induces cytoskeletal reorganization and neurite outgrowth in cultured neurons.[1] [2] [3] [4] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe adaptor protein APS is a substrate of the insulin receptor and couples receptor activation with phosphorylation of Cbl to facilitate glucose uptake. The interaction with the activated insulin receptor is mediated by the Src homology 2 (SH2) domain of APS. Here, we present the crystal structure of the APS SH2 domain in complex with the phosphorylated tyrosine kinase domain of the insulin receptor. The structure reveals a novel dimeric configuration of the APS SH2 domain, wherein the C-terminal half of each protomer is structurally divergent from conventional, monomeric SH2 domains. The APS SH2 dimer engages two kinase molecules, with pTyr-1158 of the kinase activation loop bound in the canonical phosphotyrosine binding pocket of the SH2 domain and a second phosphotyrosine, pTyr-1162, coordinated by two lysine residues in beta strand D. This structure provides a molecular visualization of one of the initial downstream recruitment events following insulin activation of its dimeric receptor. Structural basis for recruitment of the adaptor protein APS to the activated insulin receptor.,Hu J, Liu J, Ghirlando R, Saltiel AR, Hubbard SR Mol Cell. 2003 Dec;12(6):1379-89. PMID:14690593[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|