1t4o
From Proteopedia
Crystal structure of rnt1p dsRBD
Structural highlights
FunctionRNT1_YEAST DsRNA-specific nuclease that cleaves eukaryotic pre-ribosomal RNA at the U3 snoRNP-dependent A0 site in the 5'-external transcribed spacer (ETS) and in the 3'-ETS. In vitro, cleaves synthetic 5'-ETS RNA A0 site in the absence of snoRNA or other factors. Has an essential growth function in addition to pre-rRNA processing. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedRnt1 endoribonuclease, the yeast homolog of RNAse III, plays an important role in the maturation of a diverse set of RNAs. The enzymatic activity requires a conserved catalytic domain, while RNA binding requires the double-stranded RNA-binding domain (dsRBD) at the C-terminus of the protein. While bacterial RNAse III enzymes cleave double-stranded RNA, Rnt1p specifically cleaves RNAs that possess short irregular stem-loops containing 12-14 base pairs interrupted by internal loops and bulges and capped by conserved AGNN tetraloops. Consistent with this substrate specificity, the isolated Rnt1p dsRBD and the 30-40 amino acids that follow bind to AGNN-containing stem-loops preferentially in vitro. In order to understand how Rnt1p recognizes its cognate processing sites, we have defined its minimal RNA-binding domain and determined its structure by solution NMR spectroscopy and X-ray crystallography. We observe a new carboxy-terminal helix following a canonical dsRBD structure. Removal of this helix reduces binding to Rnt1p substrates. The results suggest that this helix allows the Rnt1p dsRBD to bind to short RNA stem-loops by modulating the conformation of helix alpha1, a key RNA-recognition element of the dsRBD. A new alpha-helical extension promotes RNA binding by the dsRBD of Rnt1p RNAse III.,Leulliot N, Quevillon-Cheruel S, Graille M, van Tilbeurgh H, Leeper TC, Godin KS, Edwards TE, Sigurdsson ST, Rozenkrants N, Nagel RJ, Ares M, Varani G EMBO J. 2004 Jul 7;23(13):2468-77. Epub 2004 Jun 10. PMID:15192703[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|