First time at Proteopedia? Click on the green links: they change the 3D image. Click and drag the molecules. Proteopedia is a 3D, interactive encyclopedia of proteins, RNA, DNA and other molecules. With a free user account, you can edit pages in Proteopedia. Visit the Main Page to learn more.


From Proteopedia

Jump to: navigation, search
1tf0, resolution 2.70Å ()
Ligands: ,
Gene: PAB (Finegoldia magna ATCC 29328)
Related: 1ao6, 1prb
Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Crystal structure of the GA module complexed with human serum albumin

Publication Abstract from PubMed

Many bactericide species express surface proteins that interact with human serum albumin (HSA). Protein PAB from the anaerobic bacterium Finegoldia magna (formerly Peptostreptococcus magnus) represents one of these proteins. Protein PAB contains a domain of 53 amino acid residues known as the GA module. GA homologs are also found in protein G of group C and G streptococci. Here we report the crystal structure of HSA in complex with the GA module of protein PAB. The model of the complex was refined to a resolution of 2.7 A and reveals a novel binding epitope located in domain II of the albumin molecule. The GA module is composed of a left-handed three-helix bundle, and residues from the second helix and the loops surrounding it were found to be involved in HSA binding. Furthermore, the presence of HSA-bound fatty acids seems to influence HSA-GA complex formation. F. magna has a much more restricted host specificity compared with C and G streptococci, which is also reflected in the binding of different animal albumins by proteins PAB and G. The structure of the HSA-GA complex offers a molecular explanation to this unusually clear example of bacterial adaptation.

Crystal structure and biological implications of a bacterial albumin binding module in complex with human serum albumin., Lejon S, Frick IM, Bjorck L, Wikstrom M, Svensson S, J Biol Chem. 2004 Oct 8;279(41):42924-8. Epub 2004 Jul 21. PMID:15269208

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.


[ALBU_HUMAN] Defects in ALB are a cause of familial dysalbuminemic hyperthyroxinemia (FDH) [MIM:103600]. FDH is a form of euthyroid hyperthyroxinemia that is due to increased affinity of ALB for T(4). It is the most common cause of inherited euthyroid hyperthyroxinemia in Caucasian population.[1][2][3][4]


[ALBU_HUMAN] Serum albumin, the main protein of plasma, has a good binding capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs. Its main function is the regulation of the colloidal osmotic pressure of blood. Major zinc transporter in plasma, typically binds about 80% of all plasma zinc.[5] [PAB_PEPMA] Binds serum albumin.

About this Structure

1tf0 is a 2 chain structure with sequence from Finegoldia magna atcc 29328 and Homo sapiens. Full crystallographic information is available from OCA.

See Also


  • Lejon S, Frick IM, Bjorck L, Wikstrom M, Svensson S. Crystal structure and biological implications of a bacterial albumin binding module in complex with human serum albumin. J Biol Chem. 2004 Oct 8;279(41):42924-8. Epub 2004 Jul 21. PMID:15269208 doi:10.1074/jbc.M406957200
  1. Sunthornthepvarakul T, Angkeow P, Weiss RE, Hayashi Y, Refetoff S. An identical missense mutation in the albumin gene results in familial dysalbuminemic hyperthyroxinemia in 8 unrelated families. Biochem Biophys Res Commun. 1994 Jul 29;202(2):781-7. PMID:8048949
  2. Rushbrook JI, Becker E, Schussler GC, Divino CM. Identification of a human serum albumin species associated with familial dysalbuminemic hyperthyroxinemia. J Clin Endocrinol Metab. 1995 Feb;80(2):461-7. PMID:7852505
  3. Wada N, Chiba H, Shimizu C, Kijima H, Kubo M, Koike T. A novel missense mutation in codon 218 of the albumin gene in a distinct phenotype of familial dysalbuminemic hyperthyroxinemia in a Japanese kindred. J Clin Endocrinol Metab. 1997 Oct;82(10):3246-50. PMID:9329347
  4. Sunthornthepvarakul T, Likitmaskul S, Ngowngarmratana S, Angsusingha K, Kitvitayasak S, Scherberg NH, Refetoff S. Familial dysalbuminemic hypertriiodothyroninemia: a new, dominantly inherited albumin defect. J Clin Endocrinol Metab. 1998 May;83(5):1448-54. PMID:9589637
  5. Lu J, Stewart AJ, Sadler PJ, Pinheiro TJ, Blindauer CA. Albumin as a zinc carrier: properties of its high-affinity zinc-binding site. Biochem Soc Trans. 2008 Dec;36(Pt 6):1317-21. doi: 10.1042/BST0361317. PMID:19021548 doi:10.1042/BST0361317

Proteopedia Page Contributors and Editors (what is this?)


Personal tools