| Structural highlights
Function
ACK1_HUMAN Non-receptor tyrosine-protein and serine/threonine-protein kinase that is implicated in cell spreading and migration, cell survival, cell growth and proliferation. Transduces extracellular signals to cytosolic and nuclear effectors. Phosphorylates AKT1, AR, MCF2, WASL and WWOX. Implicated in trafficking and clathrin-mediated endocytosis through binding to epidermal growth factor receptor (EGFR) and clathrin. Binds to both poly- and mono-ubiquitin and regulates ligand-induced degradation of EGFR, thereby contributing to the accumulation of EGFR at the limiting membrane of early endosomes. Downstream effector of CDC42 which mediates CDC42-dependent cell migration via phosphorylation of BCAR1. May be involved both in adult synaptic function and plasticity and in brain development. Activates AKT1 by phosphorylating it on 'Tyr-176'. Phosphorylates AR on 'Tyr-267' and 'Tyr-363' thereby promoting its recruitment to androgen-responsive enhancers (AREs). Phosphorylates WWOX on 'Tyr-287'. Phosphorylates MCF2, thereby enhancing its activity as a guanine nucleotide exchange factor (GEF) toward Rho family proteins. Contributes to the control of AXL receptor levels. Confers metastatic properties on cancer cells and promotes tumor growth by negatively regulating tumor suppressor such as WWOX and positively regulating pro-survival factors such as AKT1 and AR.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
ACK1 is a multidomain non-receptor tyrosine kinase that is an effector of the Cdc42 GTPase. Members of the ACK family have a unique domain ordering and are the only tyrosine kinases known to interact with Cdc42. In contrast with many protein kinases, ACK1 has only a modest increase in activity upon phosphorylation. We have solved the crystal structures of the human ACK1 kinase domain in both the unphosphorylated and phosphorylated states. Comparison of these structures reveals that ACK1 adopts an activated conformation independent of phosphorylation. Furthermore, the unphosphorylated activation loop is structured, and its conformation resembles that seen in activated tyrosine kinases. In addition to the apo structure, complexes are also presented with a non-hydrolyzable nucleotide analog (adenosine 5'-(beta,gamma-methylenetriphosphate)) and with the natural product debromohymenialdisine, a general inhibitor of many protein kinases. Analysis of these structures reveals a typical kinase fold, a pre-organization into the activated conformation, and an unusual substrate-binding cleft.
Crystal structures of the phosphorylated and unphosphorylated kinase domains of the Cdc42-associated tyrosine kinase ACK1.,Lougheed JC, Chen RH, Mak P, Stout TJ J Biol Chem. 2004 Oct 15;279(42):44039-45. Epub 2004 Aug 11. PMID:15308621[12]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Kato J, Kaziro Y, Satoh T. Activation of the guanine nucleotide exchange factor Dbl following ACK1-dependent tyrosine phosphorylation. Biochem Biophys Res Commun. 2000 Feb 5;268(1):141-7. PMID:10652228 doi:http://dx.doi.org/10.1006/bbrc.2000.2106
- ↑ Teo M, Tan L, Lim L, Manser E. The tyrosine kinase ACK1 associates with clathrin-coated vesicles through a binding motif shared by arrestin and other adaptors. J Biol Chem. 2001 May 25;276(21):18392-8. Epub 2001 Feb 27. PMID:11278436 doi:http://dx.doi.org/10.1074/jbc.M008795200
- ↑ Yokoyama N, Lougheed J, Miller WT. Phosphorylation of WASP by the Cdc42-associated kinase ACK1: dual hydroxyamino acid specificity in a tyrosine kinase. J Biol Chem. 2005 Dec 23;280(51):42219-26. Epub 2005 Oct 28. PMID:16257963 doi:http://dx.doi.org/10.1074/jbc.M506996200
- ↑ van der Horst EH, Degenhardt YY, Strelow A, Slavin A, Chinn L, Orf J, Rong M, Li S, See LH, Nguyen KQ, Hoey T, Wesche H, Powers S. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15901-6. Epub 2005 Oct 24. PMID:16247015 doi:http://dx.doi.org/10.1073/pnas.0508014102
- ↑ Modzelewska K, Newman LP, Desai R, Keely PJ. Ack1 mediates Cdc42-dependent cell migration and signaling to p130Cas. J Biol Chem. 2006 Dec 8;281(49):37527-35. Epub 2006 Oct 12. PMID:17038317 doi:10.1074/jbc.M604342200
- ↑ Yokoyama N, Miller WT. Purification and enzyme activity of ACK1. Methods Enzymol. 2006;406:250-60. PMID:16472662 doi:http://dx.doi.org/10.1016/S0076-6879(06)06018-6
- ↑ Howlin J, Rosenkvist J, Andersson T. TNK2 preserves epidermal growth factor receptor expression on the cell surface and enhances migration and invasion of human breast cancer cells. Breast Cancer Res. 2008;10(2):R36. doi: 10.1186/bcr2087. Epub 2008 Apr 24. PMID:18435854 doi:http://dx.doi.org/10.1186/bcr2087
- ↑ Grovdal LM, Johannessen LE, Rodland MS, Madshus IH, Stang E. Dysregulation of Ack1 inhibits down-regulation of the EGF receptor. Exp Cell Res. 2008 Apr 1;314(6):1292-300. doi: 10.1016/j.yexcr.2007.12.017. Epub , 2008 Jan 5. PMID:18262180 doi:http://dx.doi.org/10.1016/j.yexcr.2007.12.017
- ↑ Pao-Chun L, Chan PM, Chan W, Manser E. Cytoplasmic ACK1 interaction with multiple receptor tyrosine kinases is mediated by Grb2: an analysis of ACK1 effects on Axl signaling. J Biol Chem. 2009 Dec 11;284(50):34954-63. doi: 10.1074/jbc.M109.072660. Epub, 2009 Oct 8. PMID:19815557 doi:10.1074/jbc.M109.072660
- ↑ Liu Y, Karaca M, Zhang Z, Gioeli D, Earp HS, Whang YE. Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases. Oncogene. 2010 Jun 3;29(22):3208-16. doi: 10.1038/onc.2010.103. Epub 2010 Apr 12. PMID:20383201 doi:http://dx.doi.org/10.1038/onc.2010.103
- ↑ Mahajan K, Coppola D, Challa S, Fang B, Chen YA, Zhu W, Lopez AS, Koomen J, Engelman RW, Rivera C, Muraoka-Cook RS, Cheng JQ, Schonbrunn E, Sebti SM, Earp HS, Mahajan NP. Ack1 mediated AKT/PKB tyrosine 176 phosphorylation regulates its activation. PLoS One. 2010 Mar 19;5(3):e9646. doi: 10.1371/journal.pone.0009646. PMID:20333297 doi:10.1371/journal.pone.0009646
- ↑ Lougheed JC, Chen RH, Mak P, Stout TJ. Crystal structures of the phosphorylated and unphosphorylated kinase domains of the Cdc42-associated tyrosine kinase ACK1. J Biol Chem. 2004 Oct 15;279(42):44039-45. Epub 2004 Aug 11. PMID:15308621 doi:10.1074/jbc.M406703200
|