1udv
From Proteopedia
Crystal structure of the hyperthermophilic archaeal dna-binding protein Sso10b2 at 1.85 A
Structural highlights
FunctionALBA2_SACS2 Binds double-stranded DNA tightly but without sequence specificity. It is distributed uniformly and abundantly on the chromosome, suggesting a role in chromatin architecture. However, it does not significantly compact DNA. Binds rRNA and mRNA in vivo. May play a role in maintaining the structural and functional stability of RNA, and, perhaps, ribosomes (By similarity). Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structure of a small, basic DNA binding protein, Sso10b2, from the thermoacidophilic archaeon Sulfolobus solfataricus was determined by the Zn multiwavelength anomalous diffraction method and refined to 1.85 A resolution. The 89-amino-acid protein adopts a betaalphabetaalphabetabeta topology. The structure is similar to that of Sso10b1 (also called Alba) from the same organism. However, Sso10b2 contains an arginine-rich loop RDRRR motif, which may play an important role in nucleic acid binding. There are two independent Sso10b2 proteins in the asymmetric unit, and a plausible stable dimer could be deduced from the crystal structure. Topology comparison revealed that Sso10b2 is similar to several RNA-binding proteins, including IF3-C, YhhP, and DNase I. Models of the Sso10b2 dimer bound to either B-DNA or A-DNA have been constructed. Crystal structure of the hyperthermophilic archaeal DNA-binding protein Sso10b2 at a resolution of 1.85 Angstroms.,Chou CC, Lin TW, Chen CY, Wang AH J Bacteriol. 2003 Jul;185(14):4066-73. PMID:12837780[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|