1wcq
From Proteopedia
Mutagenesis of the Nucleophilic Tyrosine in a Bacterial Sialidase to Phenylalanine.
Structural highlights
FunctionNANH_MICVI To release sialic acids for use as carbon and energy sources for this non-pathogenic bacterium while in pathogenic microorganisms, sialidases have been suggested to be pathogenic factors. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedMutants of the Micromonospora viridifaciens sialidase, Y370E and Y370F, are catalytically active retaining enzymes that operate by different mechanisms. Previous substitutions with smaller amino acids, including Y370D, yielded inverting sialidases. At least one water molecule can fit into the active-site cavity of this mutant and act as a nucleophile from the face opposite the leaving group (Biochemistry 2003, 42, 12 682). Thus, addition of a CH(2) unit (Asp versus Glu) changes the mechanism from inversion back to retention of configuration. Based on Bronsted beta(lg) values, it is proposed that the Y370E mutant reacts by a double-displacement mechanism (beta(lg) on k(cat)/K(m) -0.36+/-0.04) with Glu370 acting as the nucleophile. However, the Y370F mutant (beta(lg) on k(cat)/K(m) -0.79+/-0.12) reacts via a dissociative transition state. The crystal structure of the Y370F mutant complexed with 2-deoxy-2,3-dehydro-N-acetylneuraminic acid shows no significant active-site perturbation relative to the wild-type enzyme. Two nucleophilic mutants of the Micromonospora viridifaciens sialidase operate with retention of configuration by two different mechanisms.,Watson JN, Newstead S, Narine AA, Taylor G, Bennet AJ Chembiochem. 2005 Nov;6(11):1999-2004. PMID:16206228[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|