1wq1
From Proteopedia
RAS-RASGAP COMPLEX
Structural highlights
DiseaseRASH_HUMAN Defects in HRAS are the cause of faciocutaneoskeletal syndrome (FCSS) [MIM:218040. A rare condition characterized by prenatally increased growth, postnatal growth deficiency, mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy and/or atrial tachycardia), tumor predisposition, skin and musculoskeletal abnormalities.[1] [2] [3] [4] [5] [6] [7] Defects in HRAS are the cause of congenital myopathy with excess of muscle spindles (CMEMS) [MIM:218040. CMEMS is a variant of Costello syndrome.[8] Defects in HRAS may be a cause of susceptibility to Hurthle cell thyroid carcinoma (HCTC) [MIM:607464. Hurthle cell thyroid carcinoma accounts for approximately 3% of all thyroid cancers. Although they are classified as variants of follicular neoplasms, they are more often multifocal and somewhat more aggressive and are less likely to take up iodine than are other follicular neoplasms. Note=Mutations which change positions 12, 13 or 61 activate the potential of HRAS to transform cultured cells and are implicated in a variety of human tumors. Defects in HRAS are a cause of susceptibility to bladder cancer (BLC) [MIM:109800. A malignancy originating in tissues of the urinary bladder. It often presents with multiple tumors appearing at different times and at different sites in the bladder. Most bladder cancers are transitional cell carcinomas. They begin in cells that normally make up the inner lining of the bladder. Other types of bladder cancer include squamous cell carcinoma (cancer that begins in thin, flat cells) and adenocarcinoma (cancer that begins in cells that make and release mucus and other fluids). Bladder cancer is a complex disorder with both genetic and environmental influences. Note=Defects in HRAS are the cause of oral squamous cell carcinoma (OSCC).[9] Defects in HRAS are the cause of Schimmelpenning-Feuerstein-Mims syndrome (SFM) [MIM:163200. A disease characterized by sebaceous nevi, often on the face, associated with variable ipsilateral abnormalities of the central nervous system, ocular anomalies, and skeletal defects. Many oral manifestations have been reported, not only including hypoplastic and malformed teeth, and mucosal papillomatosis, but also ankyloglossia, hemihyperplastic tongue, intraoral nevus, giant cell granuloma, ameloblastoma, bone cysts, follicular cysts, oligodontia, and odontodysplasia. Sebaceous nevi follow the lines of Blaschko and these can continue as linear intraoral lesions, as in mucosal papillomatosis.[10] FunctionRASH_HUMAN Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.[11] [12] [13] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe three-dimensional structure of the complex between human H-Ras bound to guanosine diphosphate and the guanosine triphosphatase (GTPase)-activating domain of the human GTPase-activating protein p120GAP (GAP-334) in the presence of aluminum fluoride was solved at a resolution of 2.5 angstroms. The structure shows the partly hydrophilic and partly hydrophobic nature of the communication between the two molecules, which explains the sensitivity of the interaction toward both salts and lipids. An arginine side chain (arginine-789) of GAP-334 is supplied into the active site of Ras to neutralize developing charges in the transition state. The switch II region of Ras is stabilized by GAP-334, thus allowing glutamine-61 of Ras, mutation of which activates the oncogenic potential, to participate in catalysis. The structural arrangement in the active site is consistent with a mostly associative mechanism of phosphoryl transfer and provides an explanation for the activation of Ras by glycine-12 and glutamine-61 mutations. Glycine-12 in the transition state mimic is within van der Waals distance of both arginine-789 of GAP-334 and glutamine-61 of Ras, and even its mutation to alanine would disturb the arrangements of residues in the transition state. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants.,Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F, Wittinghofer A Science. 1997 Jul 18;277(5324):333-8. PMID:9219684[14] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|