Structural highlights
Function
PEPD_MYCTU Required for virulence (PubMed:18479146). Acts both as a protease, which degrades and/or refolds damaged substrate targets, and as a chaperone (PubMed:18479146, PubMed:20061478). Plays an important role in the stress response network mediated through the two-component regulatory system MprAB and SigE signaling networks (PubMed:20061478). May utilize its PDZ domain to recognize and process misfolded proteins at the cell membrane, leading to activation of the MprAB and SigE signaling pathways and subsequent establishment of a positive feedback loop that facilitates bacterial adaptation (PubMed:20061478). Interacts with and potentially cleaves several proteins, including the 35 kDa antigen PspA (PubMed:21445360). Proteolytic cleavage of PspA may help to maintain cell envelope homeostasis in Mycobacterium and regulate specific stress response pathways during periods of extracytoplasmic stress (PubMed:21445360). In vitro, exhibits proteolytic activity against the artificial substrate beta-casein (PubMed:18479146, PubMed:20061478).[1] [2] [3]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
References
- ↑ Mohamedmohaideen NN, Palaninathan SK, Morin PM, Williams BJ, Braunstein M, Tichy SE, Locker J, Russell DH, Jacobs WR Jr, Sacchettini JC. Structure and function of the virulence-associated high-temperature requirement A of Mycobacterium tuberculosis. Biochemistry. 2008 Jun 10;47(23):6092-102. Epub 2008 May 15. PMID:18479146 doi:10.1021/bi701929m
- ↑ White MJ, He H, Penoske RM, Twining SS, Zahrt TC. PepD participates in the mycobacterial stress response mediated through MprAB and SigE. J Bacteriol. 2010 Mar;192(6):1498-510. PMID:20061478 doi:10.1128/JB.01167-09
- ↑ White MJ, Savaryn JP, Bretl DJ, He H, Penoske RM, Terhune SS, Zahrt TC. The HtrA-like serine protease PepD interacts with and modulates the Mycobacterium tuberculosis 35-kDa antigen outer envelope protein. PLoS One. 2011 Mar 22;6(3):e18175. PMID:21445360 doi:10.1371/journal.pone.0018175