2a0z
From Proteopedia
The molecular structure of toll-like receptor 3 ligand binding domain
Structural highlights
DiseaseTLR3_HUMAN Defects in TLR3 are associated with herpes simplex encephalitis type 2 (HSE2) [MIM:613002. HSE is a rare complication of human herpesvirus 1 (HHV-1) infection, occurring in only a small minority of HHV-1 infected individuals. HSE is characterized by hemorrhagic necrosis of parts of the temporal and frontal lobes. Onset is over several days and involves fever, headache, seizures, stupor, and often coma, frequently with a fatal outcome. Note=TLR3 mutations predispose otherwise healthy individuals to isolated herpes simplex encephalitis through a mechanism that involves impaired IFNs production and reduced immune defense against viral infection in the central nervous system.[1] FunctionTLR3_HUMAN Key component of innate and adaptive immunity. TLRs (Toll-like receptors) control host immune response against pathogens through recognition of molecular patterns specific to microorganisms. TLR3 is a nucleotide-sensing TLR which is activated by double-stranded RNA, a sign of viral infection. Acts via MYD88 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response.[2] [3] [4] [5] [6] [7] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedInnate immunity is the first line of defense against invading pathogens. Toll-like receptors (TLRs) act as sentinels of the innate immune system, sensing a variety of ligands from lipopolysaccharide to flagellin to dsRNA through their ligand-binding domain that is composed of leucine-rich repeats (LRRs). Ligand binding initiates a signaling cascade that leads to the up-regulation of inflammation mediators. In this study, we have expressed and crystallized the ectodomain (ECD) of human TLR3, which recognizes dsRNA, a molecular signature of viruses, and have determined the molecular structure to 2.4-A resolution. The overall horseshoe-shaped structure of the TLR3-ECD is formed by 23 repeating LRRs that are capped at each end by specialized non-LRR domains. The extensive beta-sheet on the molecule's concave surface forms a platform for several modifications, including insertions in the LRRs and 11 N-linked glycans. The TLR3-ECD structure indicates how LRR loops can establish distinct pathogen recognition receptors. The molecular structure of the Toll-like receptor 3 ligand-binding domain.,Bell JK, Botos I, Hall PR, Askins J, Shiloach J, Segal DM, Davies DR Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):10976-80. Epub 2005 Jul 25. PMID:16043704[8] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Homo sapiens | Large Structures | Askins J | Bell JK | Botos I | Davies DR | Hall PR | Segal DM | Shiloach J