2hwg

From Proteopedia

Jump to: navigation, search

Structure of phosphorylated Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system

Structural highlights

2hwg is a 2 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.7Å
Ligands:MG, MSE, NEP, OXL
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PT1_ECOLI General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr).[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Bacterial transport of many sugars, coupled to their phosphorylation, is carried out by the phosphoenolpyruvate (PEP):sugar phosphotransferase system and involves five phosphoryl group transfer reactions. Sugar translocation initiates with the Mg(2+)-dependent phosphorylation of enzyme I (EI) by PEP. Crystals of Escherichia coli EI were obtained by mixing the protein with Mg(2+) and PEP, followed by oxalate, an EI inhibitor. The crystal structure reveals a dimeric protein where each subunit comprises three domains: a domain that binds the partner PEP:sugar phosphotransferase system protein, HPr; a domain that carries the phosphorylated histidine residue, His-189; and a PEP-binding domain. The PEP-binding site is occupied by Mg(2+) and oxalate, and the phosphorylated His-189 is in-line for phosphotransfer to/from the ligand. Thus, the structure represents an enzyme intermediate just after phosphotransfer from PEP and before a conformational transition that brings His-189 approximately P in proximity to the phosphoryl group acceptor, His-15 of HPr. A model of this conformational transition is proposed whereby swiveling around an alpha-helical linker disengages the His domain from the PEP-binding domain. Assuming that HPr binds to the HPr-binding domain as observed by NMR spectroscopy of an EI fragment, a rotation around two linker segments orients the His domain relative to the HPr-binding domain so that His-189 approximately P and His-15 are appropriately stationed for an in-line phosphotransfer reaction.

Structure of phosphorylated enzyme I, the phosphoenolpyruvate:sugar phosphotransferase system sugar translocation signal protein.,Teplyakov A, Lim K, Zhu PP, Kapadia G, Chen CC, Schwartz J, Howard A, Reddy PT, Peterkofsky A, Herzberg O Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16218-23. Epub 2006 Oct 19. PMID:17053069[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Powell BS, Court DL, Inada T, Nakamura Y, Michotey V, Cui X, Reizer A, Saier MH Jr, Reizer J. Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli. Enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem. 1995 Mar 3;270(9):4822-39. PMID:7876255
  2. Teplyakov A, Lim K, Zhu PP, Kapadia G, Chen CC, Schwartz J, Howard A, Reddy PT, Peterkofsky A, Herzberg O. Structure of phosphorylated enzyme I, the phosphoenolpyruvate:sugar phosphotransferase system sugar translocation signal protein. Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16218-23. Epub 2006 Oct 19. PMID:17053069

Contents


PDB ID 2hwg

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools