2o3r
From Proteopedia
Structural Basis for Formation and Hydrolysis of Calcium Messenger Cyclic ADP-ribose by Human CD38
Structural highlights
FunctionCD38_HUMAN Synthesizes cyclic ADP-ribose, a second messenger for glucose-induced insulin secretion. Also has cADPr hydrolase activity. Also moonlights as a receptor in cells of the immune system. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHuman CD38 is a multifunctional ectoenzyme responsible for catalyzing the conversions from nicotinamide adenine dinucleotide (NAD) to cyclic ADP-ribose (cADPR) and from cADPR to ADP-ribose (ADPR). Both cADPR and ADPR are calcium messengers that can mobilize intracellular stores and activate influx as well. In this study, we determined three crystal structures of the human CD38 enzymatic domain complexed with cADPR at 1.5-A resolution, with its analog, cyclic GDP-ribose (cGDPR) (1.68 A) and with NGD (2.1 A) a substrate analog of NAD. The results indicate that the binding of cADPR or cGDPR to the active site induces structural rearrangements in the dipeptide Glu(146)-Asp(147) by as much as 2.7 A) providing the first direct evidence of a conformational change at the active site during catalysis. In addition, Glu(226) is shown to be critical not only in catalysis but also in positioning of cADPR at the catalytic site through strong hydrogen bonding interactions. Structural details obtained from these complexes provide a step-by-step description of the catalytic processes in the synthesis and hydrolysis of cADPR. Structural basis for formation and hydrolysis of the calcium messenger cyclic ADP-ribose by human CD38.,Liu Q, Kriksunov IA, Graeff R, Lee HC, Hao Q J Biol Chem. 2007 Feb 23;282(8):5853-61. Epub 2006 Dec 20. PMID:17182614[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. Loading citation details.. Citations No citations found See AlsoReferences
|
|
Categories: Homo sapiens | Large Structures | Graeff R | Hao Q | Kriksunov IA | Lee HC | Liu Q