| Structural highlights
Function
POLG_HCV77 Packages viral RNA to form a viral nucleocapsid, and promotes virion budding (Probable). Participates in the viral particle production as a result of its interaction with the non-structural protein 5A (By similarity). Binds RNA and may function as a RNA chaperone to induce the RNA structural rearrangements taking place during virus replication (PubMed:18033802). Modulates viral translation initiation by interacting with viral IRES and 40S ribosomal subunit (By similarity). Affects various cell signaling pathways, host immunity and lipid metabolism (Probable). Prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) and IFN-gamma signaling pathways and by blocking the formation of phosphorylated STAT1 and promoting ubiquitin-mediated proteasome-dependent degradation of STAT1 (By similarity) (PubMed:23799612). Activates STAT3 leading to cellular transformation (By similarity). Regulates the activity of cellular genes, including c-myc and c-fos (By similarity). May repress the promoter of p53, and sequester CREB3 and SP110 isoform 3/Sp110b in the cytoplasm (By similarity). Represses cell cycle negative regulating factor CDKN1A, thereby interrupting an important check point of normal cell cycle regulation (By similarity). Targets transcription factors involved in the regulation of inflammatory responses and in the immune response: suppresses NF-kappa-B activation, and activates AP-1 (By similarity). Binds to dendritic cells (DCs) via C1QR1, resulting in down-regulation of T-lymphocytes proliferation (PubMed:11086025, PubMed:17881511). Alters lipid metabolism by interacting with hepatocellular proteins involved in lipid accumulation and storage (PubMed:14602201). Induces up-regulation of FAS promoter activity, and thereby contributes to the increased triglyceride accumulation in hepatocytes (steatosis) (PubMed:14602201).[UniProtKB:P26662][UniProtKB:P26664][UniProtKB:P29846][UniProtKB:Q99IB8][1] [2] [3] [4] [5] Forms a heterodimer with envelope glycoprotein E2, which mediates virus attachment to the host cell, virion internalization through clathrin-dependent endocytosis and fusion with host membrane (PubMed:14990718, PubMed:16894197). Fusion with the host cell is most likely mediated by both E1 and E2, through conformational rearrangements of the heterodimer required for fusion rather than a classical class II fusion mechanism (PubMed:16533059, PubMed:24698129, PubMed:29505618). E1/E2 heterodimer binds host apolipoproteins such as APOB and APOE thereby forming a lipo-viro-particle (LVP) (PubMed:24838241, PubMed:25122793, PubMed:29695434). APOE associated to the LVP allows the initial virus attachment to cell surface receptors such as the heparan sulfate proteoglycans (HSPGs), syndecan-1 (SDC1), syndecan-1 (SDC2), the low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SCARB1) (PubMed:12356718, PubMed:12913001, PubMed:12970454, PubMed:22767607, PubMed:28404852). The cholesterol transfer activity of SCARB1 allows E2 exposure and binding of E2 to SCARB1 and the tetraspanin CD81 (PubMed:12913001, PubMed:22767607). E1/E2 heterodimer binding on CD81 activates the epithelial growth factor receptor (EGFR) signaling pathway (PubMed:22855500). Diffusion of the complex E1/E2-EGFR-SCARB1-CD81 to the cell lateral membrane allows further interaction with Claudin 1 (CLDN1) and occludin (OCLN) to finally trigger HCV entry (By similarity) (PubMed:12913001, PubMed:12970454, PubMed:19182773, PubMed:20375010, PubMed:24038151).[UniProtKB:Q99IB8][6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] Forms a heterodimer with envelope glycoprotein E1, which mediates virus attachment to the host cell, virion internalization through clathrin-dependent endocytosis and fusion with host membrane (PubMed:14990718, PubMed:16894197). Fusion with the host cell is most likely mediated by both E1 and E2, through conformational rearrangements of the heterodimer required for fusion rather than a classical class II fusion mechanism (PubMed:16533059, PubMed:24698129, PubMed:29505618). The interaction between E2 and host apolipoprotein E/APOE allows the proper assembly, maturation and infectivity of the viral particles (PubMed:25122793, PubMed:29695434). This interaction is probably promoted via the up-regulation of cellular autophagy by the virus (PubMed:29695434). E1/E2 heterodimer binds host apolipoproteins such as APOB and APOE thereby forming a lipo-viro-particle (LVP) (PubMed:24838241, PubMed:25122793, PubMed:29695434). APOE associated to the LVP allows the initial virus attachment to cell surface receptors such as the heparan sulfate proteoglycans (HSPGs), syndecan-1 (SDC1), syndecan-1 (SDC2), the low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SCARB1) (PubMed:12356718, PubMed:12913001, PubMed:12970454, PubMed:22767607, PubMed:28404852). The cholesterol transfer activity of SCARB1 allows E2 exposure and binding of E2 to SCARB1 and the tetraspanin CD81 (PubMed:12913001, PubMed:22767607). E1/E2 heterodimer binding on CD81 activates the epithelial growth factor receptor (EGFR) signaling pathway (By similarity) (PubMed:12913001, PubMed:12970454, PubMed:19182773, PubMed:20375010, PubMed:22855500, PubMed:24038151). Diffusion of the complex E1/E2-EGFR-SCARB1-CD81 to the cell lateral membrane allows further interaction with Claudin 1 (CLDN1) and occludin (OCLN) to finally trigger HCV entry (By similarity) (PubMed:12913001, PubMed:12970454, PubMed:19182773, PubMed:20375010, PubMed:24038151). Inhibits host EIF2AK2/PKR activation, preventing the establishment of an antiviral state (By similarity). Viral ligand for CD209/DC-SIGN and CLEC4M/DC-SIGNR, which are respectively found on DCs, and on liver sinusoidal endothelial cells and macrophage-like cells of lymph node sinuses (PubMed:15371595). These interactions allow the capture of circulating HCV particles by these cells and subsequent facilitated transmission to permissive cells such as hepatocytes and lymphocyte subpopulations (PubMed:15371595). The interaction between E2 and host amino acid transporter complex formed by SLC3A2 and SLC7A5/LAT1 may facilitate viral entry into host cell (PubMed:30341327).[UniProtKB:P26664][UniProtKB:Q99IB8][23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] Ion channel protein that acts as a viroporin and plays an essential role in the assembly, envelopment and secretion of viral particles (PubMed:12719519, PubMed:20824094, PubMed:27320856). Participates in virus envelopment by coordinating the encounter between NS5A and NS2-based assembly sites loaded with E1/E2 heterodimer, which subsequently leads to nucleocapsid envelopment (By similarity). Creates a pore in acidic organelles and releases Ca(2+) and H(+) in the cytoplasm of infected cells, leading to a productive viral infection (Probable) (PubMed:20824094). High levels of cytoplasmic Ca(2+) may trigger membrane trafficking and transport of viral ER-associated proteins to viroplasms, sites of viral genome replication (Probable). The release of Ca(2+) may also activate the inflamasome leading to chronic inflammation (Probable) (PubMed:31801866). Targets also host mitochondria and induces mitochondrial depolarization (PubMed:29039530). In addition of its role as a viroporin, acts as a lipid raft adhesion factor (PubMed:27320856).[UniProtKB:Q99IB8][42] [43] [44] [45] [46] [47] [48] Cysteine protease required for the proteolytic auto-cleavage between the non-structural proteins NS2 and NS3 (PubMed:8248148). The N-terminus of NS3 is required for the function of NS2 protease (active region NS2-3) (By similarity). Promotes the initiation of viral particle assembly by mediating the interaction between structural and non-structural proteins (PubMed:21147927).[UniProtKB:P26663][49] [50] Displays three enzymatic activities: serine protease with a chymotrypsin-like fold, NTPase and RNA helicase (PubMed:25551442). NS3 serine protease, in association with NS4A, is responsible for the cleavages of NS3-NS4A, NS4A-NS4B, NS4B-NS5A and NS5A-NS5B (PubMed:8035505, PubMed:8189513, PubMed:8386278). The NS3/NS4A complex prevents phosphorylation of host IRF3, thus preventing the establishment of dsRNA induced antiviral state (By similarity). The NS3/NS4A complex induces host amino acid transporter component SLC3A2, thus contributing to HCV propagation (PubMed:30341327). NS3 RNA helicase binds to RNA and unwinds both dsDNA and dsRNA in the 3' to 5' direction, and likely resolves RNA complicated stable secondary structures in the template strand (Probable). Binds a single ATP and catalyzes the unzipping of a single base pair of dsRNA (PubMed:21940894). Inhibits host antiviral proteins TBK1 and IRF3 thereby preventing the establishment of an antiviral state (By similarity). Cleaves host MAVS/CARDIF thereby preventing the establishment of an antiviral state (PubMed:16177806, PubMed:16301520). Cleaves host TICAM1/TRIF, thereby disrupting TLR3 signaling and preventing the establishment of an antiviral state (PubMed:15710891).[UniProtKB:Q9WMX2][51] [52] [53] [54] [55] [56] [57] [58] [59] [60] Peptide cofactor which forms a non-covalent complex with the N-terminal of NS3 serine protease (PubMed:21507982, PubMed:8189513). The NS3/NS4A complex prevents phosphorylation of host IRF3, thus preventing the establishment of dsRNA induced antiviral state (By similarity). The NS3/NS4A complex induces host amino acid transporter component SLC3A2, thus contributing to HCV propagation (PubMed:30341327).[UniProtKB:Q9WMX2][61] [62] [63] Induces a specific membrane alteration that serves as a scaffold for the virus replication complex (PubMed:12021330). This membrane alteration gives rise to the so-called ER-derived membranous web that contains the replication complex (PubMed:12021330). NS4B self-interaction contributes to its function in membranous web formation (PubMed:16731940). Promotes host TRIF protein degradation in a CASP8-dependent manner thereby inhibiting host TLR3-mediated interferon signaling (PubMed:29782532). Disrupts the interaction between STING and TBK1 contributing to the inhibition of interferon signaling (PubMed:23542348).[64] [65] [66] [67] Phosphorylated protein that is indispensable for viral replication and assembly (PubMed:27578425). Both hypo- and hyperphosphorylated states are required for the viral life cycle (By similarity). The hyperphosphorylated form of NS5A is an inhibitor of viral replication (By similarity). Involved in RNA-binding and especially in binding to the viral genome (Probable). Zinc is essential for RNA-binding (PubMed:20926572). Participates in the viral particle production as a result of its interaction with the viral mature core protein (By similarity). Its interaction with host VAPB may target the viral replication complex to vesicles (By similarity). Down-regulates viral IRES translation initiation (By similarity). Mediates interferon resistance, presumably by interacting with and inhibiting host EIF2AK2/PKR (PubMed:16951545). Prevents BIN1-induced apoptosis (PubMed:16530520). Acts as a transcriptional activator of some host genes important for viral replication when localized in the nucleus (By similarity). Via the interaction with host PACSIN2, modulates lipid droplet formation in order to promote virion assembly (PubMed:31801866). Modulates TNFRSF21/DR6 signaling pathway for viral propagation (PubMed:28743875).[UniProtKB:P26662][UniProtKB:P26664][UniProtKB:Q99IB8][UniProtKB:Q9WMX2][68] [69] [70] [71] [72] [73] [74] [75] RNA-dependent RNA polymerase that performs primer-template recognition and RNA synthesis during viral replication (PubMed:20729191). Initiates RNA transcription/replication at a flavin adenine dinucleotide (FAD), resulting in a 5'- FAD cap on viral RNAs. In this way, recognition of viral 5' RNA by host pattern recognition receptors can be bypassed (PubMed:37407817), thereby evading activation of antiviral pathways.[76] [77]
Publication Abstract from PubMed
Telaprevir (VX-950) is a highly selective, potent inhibitor of the hepatitis C virus (HCV) NS3.4A serine protease. It has demonstrated strong antiviral activity in patients chronically infected with genotype 1 HCV when dosed alone or in combination with peginterferon alfa-2a. Substitutions of Arg(155) of the HCV NS3 protease domain have been previously detected in HCV isolates from some patients during telaprevir dosing. In this study, Arg(155) was replaced with various residues in genotype 1a protease domain proteins and in genotype 1b HCV subgenomic replicons. Characterization of both the purified enzymes and reconstituted replicon cells demonstrated that substitutions of Arg(155) with these residues conferred low level resistance to telaprevir (<25-fold). An x-ray structure of genotype 1a HCV protease domain with the R155K mutation, in a complex with an NS4A co-factor peptide, was determined at a resolution of 2.5A. The crystal structure of the R155K protease is essentially identical to that of the wild-type apoenzyme (Protein Data Bank code 1A1R) except for the side chain of mutated residue 155. Telaprevir was docked into the x-ray structure of the R155K protease, and modeling analysis suggests that the P2 group of telaprevir loses several hydrophobic contacts with the Lys(155) side chain. It was demonstrated that replicon cells containing substitutions at NS3 protease residue 155 remain fully sensitive to interferon alpha or ribavirin. Finally, these variant replicons were shown to have reduced replication capacity compared with the wild-type HCV replicon in cells.
Phenotypic and structural analyses of hepatitis C virus NS3 protease Arg155 variants: sensitivity to telaprevir (VX-950) and interferon alpha.,Zhou Y, Muh U, Hanzelka BL, Bartels DJ, Wei Y, Rao BG, Brennan DL, Tigges AM, Swenson L, Kwong AD, Lin C J Biol Chem. 2007 Aug 3;282(31):22619-28. Epub 2007 Jun 6. PMID:17556358[78]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Kittlesen DJ, Chianese-Bullock KA, Yao ZQ, Braciale TJ, Hahn YS. Interaction between complement receptor gC1qR and hepatitis C virus core protein inhibits T-lymphocyte proliferation. J Clin Invest. 2000 Nov;106(10):1239-49. PMID:11086025 doi:10.1172/JCI10323
- ↑ Ruggieri A, Murdolo M, Rapicetta M. Induction of FAS ligand expression in a human hepatoblastoma cell line by HCV core protein. Virus Res. 2003 Nov;97(2):103-10. doi: 10.1016/j.virusres.2003.08.004. PMID:14602201 doi:http://dx.doi.org/10.1016/j.virusres.2003.08.004
- ↑ Waggoner SN, Hall CH, Hahn YS. HCV core protein interaction with gC1q receptor inhibits Th1 differentiation of CD4+ T cells via suppression of dendritic cell IL-12 production. J Leukoc Biol. 2007 Dec;82(6):1407-19. Epub 2007 Sep 19. PMID:17881511 doi:10.1189/jlb.0507268
- ↑ Ivanyi-Nagy R, Lavergne JP, Gabus C, Ficheux D, Darlix JL. RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae. Nucleic Acids Res. 2008 Feb;36(3):712-25. doi: 10.1093/nar/gkm1051. Epub 2007 Nov , 22. PMID:18033802 doi:http://dx.doi.org/10.1093/nar/gkm1051
- ↑ Anjum S, Afzal MS, Ahmad T, Aslam B, Waheed Y, Shafi T, Qadri I. Mutations in the STAT1‑interacting domain of the hepatitis C virus core protein modulate the response to antiviral therapy. Mol Med Rep. 2013 Aug;8(2):487-92. doi: 10.3892/mmr.2013.1541. Epub 2013 Jun 25. PMID:23799612 doi:http://dx.doi.org/10.3892/mmr.2013.1541
- ↑ Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, Filocamo G, Traboni C, Nicosia A, Cortese R, Vitelli A. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 2002 Oct 1;21(19):5017-25. PMID:12356718
- ↑ Bartosch B, Vitelli A, Granier C, Goujon C, Dubuisson J, Pascale S, Scarselli E, Cortese R, Nicosia A, Cosset FL. Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem. 2003 Oct 24;278(43):41624-30. Epub 2003 Aug 11. PMID:12913001 doi:http://dx.doi.org/10.1074/jbc.M305289200
- ↑ Cocquerel L, Kuo CC, Dubuisson J, Levy S. CD81-dependent binding of hepatitis C virus E1E2 heterodimers. J Virol. 2003 Oct;77(19):10677-83. PMID:12970454
- ↑ Op De Beeck A, Voisset C, Bartosch B, Ciczora Y, Cocquerel L, Keck Z, Foung S, Cosset FL, Dubuisson J. Characterization of functional hepatitis C virus envelope glycoproteins. J Virol. 2004 Mar;78(6):2994-3002. PMID:14990718
- ↑ Perez-Berna AJ, Moreno MR, Guillen J, Bernabeu A, Villalain J. The membrane-active regions of the hepatitis C virus E1 and E2 envelope glycoproteins. Biochemistry. 2006 Mar 21;45(11):3755-68. PMID:16533059 doi:http://dx.doi.org/10.1021/bi0523963
- ↑ Codran A, Royer C, Jaeck D, Bastien-Valle M, Baumert TF, Kieny MP, Pereira CA, Martin JP. Entry of hepatitis C virus pseudotypes into primary human hepatocytes by clathrin-dependent endocytosis. J Gen Virol. 2006 Sep;87(Pt 9):2583-93. PMID:16894197 doi:87/9/2583
- ↑ Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, de Jong YP, Rice CM. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature. 2009 Feb 12;457(7231):882-6. doi: 10.1038/nature07684. Epub 2009 Jan 28. PMID:19182773 doi:http://dx.doi.org/10.1038/nature07684
- ↑ Harris HJ, Davis C, Mullins JG, Hu K, Goodall M, Farquhar MJ, Mee CJ, McCaffrey K, Young S, Drummer H, Balfe P, McKeating JA. Claudin association with CD81 defines hepatitis C virus entry. J Biol Chem. 2010 Jul 2;285(27):21092-102. doi: 10.1074/jbc.M110.104836. Epub, 2010 Apr 7. PMID:20375010 doi:http://dx.doi.org/10.1074/jbc.M110.104836
- ↑ Dao Thi VL, Granier C, Zeisel MB, Guerin M, Mancip J, Granio O, Penin F, Lavillette D, Bartenschlager R, Baumert TF, Cosset FL, Dreux M. Characterization of hepatitis C virus particle subpopulations reveals multiple usage of the scavenger receptor BI for entry steps. J Biol Chem. 2012 Sep 7;287(37):31242-57. doi: 10.1074/jbc.M112.365924. Epub 2012 , Jul 5. PMID:22767607 doi:http://dx.doi.org/10.1074/jbc.M112.365924
- ↑ Diao J, Pantua H, Ngu H, Komuves L, Diehl L, Schaefer G, Kapadia SB. Hepatitis C virus induces epidermal growth factor receptor activation via CD81 binding for viral internalization and entry. J Virol. 2012 Oct;86(20):10935-49. doi: 10.1128/JVI.00750-12. Epub 2012 Aug 1. PMID:22855500 doi:http://dx.doi.org/10.1128/JVI.00750-12
- ↑ Douam F, Dao Thi VL, Maurin G, Fresquet J, Mompelat D, Zeisel MB, Baumert TF, Cosset FL, Lavillette D. Critical interaction between E1 and E2 glycoproteins determines binding and fusion properties of hepatitis C virus during cell entry. Hepatology. 2014 Mar;59(3):776-88. doi: 10.1002/hep.26733. Epub 2014 Jan 28. PMID:24038151 doi:http://dx.doi.org/10.1002/hep.26733
- ↑ Tello D, Rodriguez-Rodriguez M, Ortega S, Lombana L, Yelamos B, Gomez-Gutierrez J, Peterson DL, Gavilanes F. Fusogenic properties of the ectodomains of hepatitis C virus envelope proteins. FEBS J. 2014 Jun;281(11):2558-69. doi: 10.1111/febs.12802. Epub 2014 Apr 28. PMID:24698129 doi:http://dx.doi.org/10.1111/febs.12802
- ↑ Boyer A, Dumans A, Beaumont E, Etienne L, Roingeard P, Meunier JC. The association of hepatitis C virus glycoproteins with apolipoproteins E and B early in assembly is conserved in lipoviral particles. J Biol Chem. 2014 Jul 4;289(27):18904-13. doi: 10.1074/jbc.M113.538256. Epub 2014 , May 16. PMID:24838241 doi:http://dx.doi.org/10.1074/jbc.M113.538256
- ↑ Lee JY, Acosta EG, Stoeck IK, Long G, Hiet MS, Mueller B, Fackler OT, Kallis S, Bartenschlager R. Apolipoprotein E likely contributes to a maturation step of infectious hepatitis C virus particles and interacts with viral envelope glycoproteins. J Virol. 2014 Nov;88(21):12422-37. doi: 10.1128/JVI.01660-14. Epub 2014 Aug 13. PMID:25122793 doi:http://dx.doi.org/10.1128/JVI.01660-14
- ↑ Fan H, Qiao L, Kang KD, Fan J, Wei W, Luo G. Attachment and Postattachment Receptors Important for Hepatitis C Virus Infection and Cell-to-Cell Transmission. J Virol. 2017 Jun 9;91(13):e00280-17. doi: 10.1128/JVI.00280-17. Print 2017 Jul , 1. PMID:28404852 doi:http://dx.doi.org/10.1128/JVI.00280-17
- ↑ Douam F, Fusil F, Enguehard M, Dib L, Nadalin F, Schwaller L, Hrebikova G, Mancip J, Mailly L, Montserret R, Ding Q, Maisse C, Carlot E, Xu K, Verhoeyen E, Baumert TF, Ploss A, Carbone A, Cosset FL, Lavillette D. A protein coevolution method uncovers critical features of the Hepatitis C Virus fusion mechanism. PLoS Pathog. 2018 Mar 5;14(3):e1006908. doi: 10.1371/journal.ppat.1006908. , eCollection 2018 Mar. PMID:29505618 doi:http://dx.doi.org/10.1371/journal.ppat.1006908
- ↑ Kim JY, Ou JJ. Regulation of Apolipoprotein E Trafficking by Hepatitis C Virus-Induced Autophagy. J Virol. 2018 Jun 29;92(14):e00211-18. doi: 10.1128/JVI.00211-18. Print 2018 Jul , 15. PMID:29695434 doi:http://dx.doi.org/10.1128/JVI.00211-18
- ↑ Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, Filocamo G, Traboni C, Nicosia A, Cortese R, Vitelli A. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 2002 Oct 1;21(19):5017-25. PMID:12356718
- ↑ Bartosch B, Vitelli A, Granier C, Goujon C, Dubuisson J, Pascale S, Scarselli E, Cortese R, Nicosia A, Cosset FL. Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem. 2003 Oct 24;278(43):41624-30. Epub 2003 Aug 11. PMID:12913001 doi:http://dx.doi.org/10.1074/jbc.M305289200
- ↑ Cocquerel L, Kuo CC, Dubuisson J, Levy S. CD81-dependent binding of hepatitis C virus E1E2 heterodimers. J Virol. 2003 Oct;77(19):10677-83. PMID:12970454
- ↑ Op De Beeck A, Voisset C, Bartosch B, Ciczora Y, Cocquerel L, Keck Z, Foung S, Cosset FL, Dubuisson J. Characterization of functional hepatitis C virus envelope glycoproteins. J Virol. 2004 Mar;78(6):2994-3002. PMID:14990718
- ↑ Cormier EG, Durso RJ, Tsamis F, Boussemart L, Manix C, Olson WC, Gardner JP, Dragic T. L-SIGN (CD209L) and DC-SIGN (CD209) mediate transinfection of liver cells by hepatitis C virus. Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14067-72. doi: , 10.1073/pnas.0405695101. Epub 2004 Sep 15. PMID:15371595 doi:http://dx.doi.org/10.1073/pnas.0405695101
- ↑ Perez-Berna AJ, Moreno MR, Guillen J, Bernabeu A, Villalain J. The membrane-active regions of the hepatitis C virus E1 and E2 envelope glycoproteins. Biochemistry. 2006 Mar 21;45(11):3755-68. PMID:16533059 doi:http://dx.doi.org/10.1021/bi0523963
- ↑ Codran A, Royer C, Jaeck D, Bastien-Valle M, Baumert TF, Kieny MP, Pereira CA, Martin JP. Entry of hepatitis C virus pseudotypes into primary human hepatocytes by clathrin-dependent endocytosis. J Gen Virol. 2006 Sep;87(Pt 9):2583-93. PMID:16894197 doi:87/9/2583
- ↑ Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, de Jong YP, Rice CM. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature. 2009 Feb 12;457(7231):882-6. doi: 10.1038/nature07684. Epub 2009 Jan 28. PMID:19182773 doi:http://dx.doi.org/10.1038/nature07684
- ↑ Harris HJ, Davis C, Mullins JG, Hu K, Goodall M, Farquhar MJ, Mee CJ, McCaffrey K, Young S, Drummer H, Balfe P, McKeating JA. Claudin association with CD81 defines hepatitis C virus entry. J Biol Chem. 2010 Jul 2;285(27):21092-102. doi: 10.1074/jbc.M110.104836. Epub, 2010 Apr 7. PMID:20375010 doi:http://dx.doi.org/10.1074/jbc.M110.104836
- ↑ Dao Thi VL, Granier C, Zeisel MB, Guerin M, Mancip J, Granio O, Penin F, Lavillette D, Bartenschlager R, Baumert TF, Cosset FL, Dreux M. Characterization of hepatitis C virus particle subpopulations reveals multiple usage of the scavenger receptor BI for entry steps. J Biol Chem. 2012 Sep 7;287(37):31242-57. doi: 10.1074/jbc.M112.365924. Epub 2012 , Jul 5. PMID:22767607 doi:http://dx.doi.org/10.1074/jbc.M112.365924
- ↑ Diao J, Pantua H, Ngu H, Komuves L, Diehl L, Schaefer G, Kapadia SB. Hepatitis C virus induces epidermal growth factor receptor activation via CD81 binding for viral internalization and entry. J Virol. 2012 Oct;86(20):10935-49. doi: 10.1128/JVI.00750-12. Epub 2012 Aug 1. PMID:22855500 doi:http://dx.doi.org/10.1128/JVI.00750-12
- ↑ Douam F, Dao Thi VL, Maurin G, Fresquet J, Mompelat D, Zeisel MB, Baumert TF, Cosset FL, Lavillette D. Critical interaction between E1 and E2 glycoproteins determines binding and fusion properties of hepatitis C virus during cell entry. Hepatology. 2014 Mar;59(3):776-88. doi: 10.1002/hep.26733. Epub 2014 Jan 28. PMID:24038151 doi:http://dx.doi.org/10.1002/hep.26733
- ↑ Tello D, Rodriguez-Rodriguez M, Ortega S, Lombana L, Yelamos B, Gomez-Gutierrez J, Peterson DL, Gavilanes F. Fusogenic properties of the ectodomains of hepatitis C virus envelope proteins. FEBS J. 2014 Jun;281(11):2558-69. doi: 10.1111/febs.12802. Epub 2014 Apr 28. PMID:24698129 doi:http://dx.doi.org/10.1111/febs.12802
- ↑ Boyer A, Dumans A, Beaumont E, Etienne L, Roingeard P, Meunier JC. The association of hepatitis C virus glycoproteins with apolipoproteins E and B early in assembly is conserved in lipoviral particles. J Biol Chem. 2014 Jul 4;289(27):18904-13. doi: 10.1074/jbc.M113.538256. Epub 2014 , May 16. PMID:24838241 doi:http://dx.doi.org/10.1074/jbc.M113.538256
- ↑ Lee JY, Acosta EG, Stoeck IK, Long G, Hiet MS, Mueller B, Fackler OT, Kallis S, Bartenschlager R. Apolipoprotein E likely contributes to a maturation step of infectious hepatitis C virus particles and interacts with viral envelope glycoproteins. J Virol. 2014 Nov;88(21):12422-37. doi: 10.1128/JVI.01660-14. Epub 2014 Aug 13. PMID:25122793 doi:http://dx.doi.org/10.1128/JVI.01660-14
- ↑ Fan H, Qiao L, Kang KD, Fan J, Wei W, Luo G. Attachment and Postattachment Receptors Important for Hepatitis C Virus Infection and Cell-to-Cell Transmission. J Virol. 2017 Jun 9;91(13):e00280-17. doi: 10.1128/JVI.00280-17. Print 2017 Jul , 1. PMID:28404852 doi:http://dx.doi.org/10.1128/JVI.00280-17
- ↑ Douam F, Fusil F, Enguehard M, Dib L, Nadalin F, Schwaller L, Hrebikova G, Mancip J, Mailly L, Montserret R, Ding Q, Maisse C, Carlot E, Xu K, Verhoeyen E, Baumert TF, Ploss A, Carbone A, Cosset FL, Lavillette D. A protein coevolution method uncovers critical features of the Hepatitis C Virus fusion mechanism. PLoS Pathog. 2018 Mar 5;14(3):e1006908. doi: 10.1371/journal.ppat.1006908. , eCollection 2018 Mar. PMID:29505618 doi:http://dx.doi.org/10.1371/journal.ppat.1006908
- ↑ Kim JY, Ou JJ. Regulation of Apolipoprotein E Trafficking by Hepatitis C Virus-Induced Autophagy. J Virol. 2018 Jun 29;92(14):e00211-18. doi: 10.1128/JVI.00211-18. Print 2018 Jul , 15. PMID:29695434 doi:http://dx.doi.org/10.1128/JVI.00211-18
- ↑ Nguyen NNT, Lim YS, Nguyen LP, Tran SC, Luong TTD, Nguyen TTT, Pham HT, Mai HN, Choi JW, Han SS, Hwang SB. Hepatitis C Virus Modulates Solute carrier family 3 member 2 for Viral Propagation. Sci Rep. 2018 Oct 19;8(1):15486. doi: 10.1038/s41598-018-33861-6. PMID:30341327 doi:http://dx.doi.org/10.1038/s41598-018-33861-6
- ↑ Pavlovic D, Neville DC, Argaud O, Blumberg B, Dwek RA, Fischer WB, Zitzmann N. The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc Natl Acad Sci U S A. 2003 May 13;100(10):6104-8. Epub 2003 Apr 28. PMID:12719519 doi:http://dx.doi.org/10.1073/pnas.1031527100
- ↑ Wozniak AL, Griffin S, Rowlands D, Harris M, Yi M, Lemon SM, Weinman SA. Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production. PLoS Pathog. 2010 Sep 2;6(9):e1001087. doi: 10.1371/journal.ppat.1001087. PMID:20824094 doi:http://dx.doi.org/10.1371/journal.ppat.1001087
- ↑ Lee GY, Lee S, Lee HR, Yoo YD. Hepatitis C virus p7 mediates membrane-to-membrane adhesion. Biochim Biophys Acta. 2016 Sep;1861(9 Pt A):1096-1101. doi: , 10.1016/j.bbalip.2016.06.011. Epub 2016 Jun 17. PMID:27320856 doi:http://dx.doi.org/10.1016/j.bbalip.2016.06.011
- ↑ You DG, Lee HR, Kim WK, Kim HJ, Lee GY, Yoo YD. Hepatitis C virus p7 induces mitochondrial depolarization of isolated liver mitochondria. Mol Med Rep. 2017 Dec;16(6):9533-9538. doi: 10.3892/mmr.2017.7809. Epub 2017 Oct , 17. PMID:29039530 doi:http://dx.doi.org/10.3892/mmr.2017.7809
- ↑ Nguyen LP, Tran SC, Suetsugu S, Lim YS, Hwang SB. PACSIN2 Interacts with Nonstructural Protein 5A and Regulates Hepatitis C Virus Assembly. J Virol. 2020 Feb 14;94(5):e01531-19. doi: 10.1128/JVI.01531-19. Print 2020 Feb , 14. PMID:31801866 doi:http://dx.doi.org/10.1128/JVI.01531-19
- ↑ Premkumar A, Wilson L, Ewart GD, Gage PW. Cation-selective ion channels formed by p7 of hepatitis C virus are blocked by hexamethylene amiloride. FEBS Lett. 2004 Jan 16;557(1-3):99-103. doi: 10.1016/s0014-5793(03)01453-4. PMID:14741348 doi:http://dx.doi.org/10.1016/s0014-5793(03)01453-4
- ↑ Shrivastava S, Mukherjee A, Ray R, Ray RB. Hepatitis C virus induces interleukin-1beta (IL-1beta)/IL-18 in circulatory and resident liver macrophages. J Virol. 2013 Nov;87(22):12284-90. doi: 10.1128/JVI.01962-13. Epub 2013 Sep 4. PMID:24006444 doi:http://dx.doi.org/10.1128/JVI.01962-13
- ↑ Stapleford KA, Lindenbach BD. Hepatitis C virus NS2 coordinates virus particle assembly through physical interactions with the E1-E2 glycoprotein and NS3-NS4A enzyme complexes. J Virol. 2011 Feb;85(4):1706-17. doi: 10.1128/JVI.02268-10. Epub 2010 Dec 8. PMID:21147927 doi:http://dx.doi.org/10.1128/JVI.02268-10
- ↑ Grakoui A, McCourt DW, Wychowski C, Feinstone SM, Rice CM. A second hepatitis C virus-encoded proteinase. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10583-7. PMID:8248148
- ↑ Li K, Foy E, Ferreon JC, Nakamura M, Ferreon AC, Ikeda M, Ray SC, Gale M Jr, Lemon SM. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2992-7. doi: , 10.1073/pnas.0408824102. Epub 2005 Feb 14. PMID:15710891 doi:http://dx.doi.org/10.1073/pnas.0408824102
- ↑ Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature. 2005 Oct 20;437(7062):1167-72. Epub 2005 Sep 21. PMID:16177806 doi:nature04193
- ↑ Li XD, Sun L, Seth RB, Pineda G, Chen ZJ. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17717-22. doi: , 10.1073/pnas.0508531102. Epub 2005 Nov 21. PMID:16301520 doi:http://dx.doi.org/10.1073/pnas.0508531102
- ↑ Cheng W, Arunajadai SG, Moffitt JR, Tinoco I Jr, Bustamante C. Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase. Science. 2011 Sep 23;333(6050):1746-9. doi: 10.1126/science.1206023. PMID:21940894 doi:http://dx.doi.org/10.1126/science.1206023
- ↑ Ventura GT, Costa EC, Capaccia AM, Mohana-Borges R. pH-dependent conformational changes in the HCV NS3 protein modulate its ATPase and helicase activities. PLoS One. 2014 Dec 31;9(12):e115941. doi: 10.1371/journal.pone.0115941. , eCollection 2014. PMID:25551442 doi:http://dx.doi.org/10.1371/journal.pone.0115941
- ↑ Nguyen NNT, Lim YS, Nguyen LP, Tran SC, Luong TTD, Nguyen TTT, Pham HT, Mai HN, Choi JW, Han SS, Hwang SB. Hepatitis C Virus Modulates Solute carrier family 3 member 2 for Viral Propagation. Sci Rep. 2018 Oct 19;8(1):15486. doi: 10.1038/s41598-018-33861-6. PMID:30341327 doi:http://dx.doi.org/10.1038/s41598-018-33861-6
- ↑ Bartenschlager R, Ahlborn-Laake L, Mous J, Jacobsen H. Kinetic and structural analyses of hepatitis C virus polyprotein processing. J Virol. 1994 Aug;68(8):5045-55. doi: 10.1128/JVI.68.8.5045-5055.1994. PMID:8035505 doi:http://dx.doi.org/10.1128/JVI.68.8.5045-5055.1994
- ↑ Failla C, Tomei L, De Francesco R. Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. J Virol. 1994 Jun;68(6):3753-60. doi: 10.1128/JVI.68.6.3753-3760.1994. PMID:8189513 doi:http://dx.doi.org/10.1128/JVI.68.6.3753-3760.1994
- ↑ Grakoui A, McCourt DW, Wychowski C, Feinstone SM, Rice CM. Characterization of the hepatitis C virus-encoded serine proteinase: determination of proteinase-dependent polyprotein cleavage sites. J Virol. 1993 May;67(5):2832-43. doi: 10.1128/JVI.67.5.2832-2843.1993. PMID:8386278 doi:http://dx.doi.org/10.1128/JVI.67.5.2832-2843.1993
- ↑ Serebrov V, Pyle AM. Periodic cycles of RNA unwinding and pausing by hepatitis C virus NS3 helicase. Nature. 2004 Jul 22;430(6998):476-80. doi: 10.1038/nature02704. PMID:15269774 doi:http://dx.doi.org/10.1038/nature02704
- ↑ Romano KP, Laine JM, Deveau LM, Cao H, Massi F, Schiffer CA. Molecular mechanisms of viral and host-cell substrate recognition by HCV NS3/4A protease. J Virol. 2011 Apr 20. PMID:21507982 doi:10.1128/JVI.00377-11
- ↑ Nguyen NNT, Lim YS, Nguyen LP, Tran SC, Luong TTD, Nguyen TTT, Pham HT, Mai HN, Choi JW, Han SS, Hwang SB. Hepatitis C Virus Modulates Solute carrier family 3 member 2 for Viral Propagation. Sci Rep. 2018 Oct 19;8(1):15486. doi: 10.1038/s41598-018-33861-6. PMID:30341327 doi:http://dx.doi.org/10.1038/s41598-018-33861-6
- ↑ Failla C, Tomei L, De Francesco R. Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. J Virol. 1994 Jun;68(6):3753-60. doi: 10.1128/JVI.68.6.3753-3760.1994. PMID:8189513 doi:http://dx.doi.org/10.1128/JVI.68.6.3753-3760.1994
- ↑ Egger D, Wolk B, Gosert R, Bianchi L, Blum HE, Moradpour D, Bienz K. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol. 2002 Jun;76(12):5974-84. doi: 10.1128/jvi.76.12.5974-5984.2002. PMID:12021330 doi:http://dx.doi.org/10.1128/jvi.76.12.5974-5984.2002
- ↑ Yu GY, Lee KJ, Gao L, Lai MM. Palmitoylation and polymerization of hepatitis C virus NS4B protein. J Virol. 2006 Jun;80(12):6013-23. PMID:16731940 doi:http://dx.doi.org/80/12/6013
- ↑ Ding Q, Cao X, Lu J, Huang B, Liu YJ, Kato N, Shu HB, Zhong J. Hepatitis C virus NS4B blocks the interaction of STING and TBK1 to evade host innate immunity. J Hepatol. 2013 Jul;59(1):52-8. doi: 10.1016/j.jhep.2013.03.019. Epub 2013 Mar , 28. PMID:23542348 doi:http://dx.doi.org/10.1016/j.jhep.2013.03.019
- ↑ Liang Y, Cao X, Ding Q, Zhao Y, He Z, Zhong J. Hepatitis C virus NS4B induces the degradation of TRIF to inhibit TLR3-mediated interferon signaling pathway. PLoS Pathog. 2018 May 21;14(5):e1007075. doi: 10.1371/journal.ppat.1007075. , eCollection 2018 May. PMID:29782532 doi:http://dx.doi.org/10.1371/journal.ppat.1007075
- ↑ Nanda SK, Herion D, Liang TJ. The SH3 binding motif of HCV [corrected] NS5A protein interacts with Bin1 and is important for apoptosis and infectivity. Gastroenterology. 2006 Mar;130(3):794-809. PMID:16530520 doi:S0016-5085(05)02540-0
- ↑ Liang Y, Kang CB, Yoon HS. Molecular and structural characterization of the domain 2 of hepatitis C virus non-structural protein 5A. Mol Cells. 2006 Aug 31;22(1):13-20. PMID:16951545
- ↑ Hwang J, Huang L, Cordek DG, Vaughan R, Reynolds SL, Kihara G, Raney KD, Kao CC, Cameron CE. Hepatitis C virus nonstructural protein 5A: biochemical characterization of a novel structural class of RNA-binding proteins. J Virol. 2010 Dec;84(24):12480-91. doi: 10.1128/JVI.01319-10. Epub 2010 Oct 6. PMID:20926572 doi:http://dx.doi.org/10.1128/JVI.01319-10
- ↑ Yang C, Zhao X, Sun D, Yang L, Chong C, Pan Y, Chi X, Gao Y, Wang M, Shi X, Sun H, Lv J, Gao Y, Zhong J, Niu J, Sun B. Interferon alpha (IFNα)-induced TRIM22 interrupts HCV replication by ubiquitinating NS5A. Cell Mol Immunol. 2016 Jan;13(1):94-102. PMID:25683609 doi:10.1038/cmi.2014.131
- ↑ Wang S, Chen Y, Li C, Wu Y, Guo L, Peng C, Huang Y, Cheng G, Qin FX. TRIM14 inhibits hepatitis C virus infection by SPRY domain-dependent targeted degradation of the viral NS5A protein. Sci Rep. 2016 Aug 31;6:32336. PMID:27578425 doi:10.1038/srep32336
- ↑ Luong TTD, Tran GVQ, Shin DJ, Lim YS, Hwang SB. Hepatitis C Virus Exploits Death Receptor 6-mediated Signaling Pathway to Facilitate Viral Propagation. Sci Rep. 2017 Jul 25;7(1):6445. doi: 10.1038/s41598-017-06740-9. PMID:28743875 doi:http://dx.doi.org/10.1038/s41598-017-06740-9
- ↑ Nguyen LP, Tran SC, Suetsugu S, Lim YS, Hwang SB. PACSIN2 Interacts with Nonstructural Protein 5A and Regulates Hepatitis C Virus Assembly. J Virol. 2020 Feb 14;94(5):e01531-19. doi: 10.1128/JVI.01531-19. Print 2020 Feb , 14. PMID:31801866 doi:http://dx.doi.org/10.1128/JVI.01531-19
- ↑ Hwang J, Huang L, Cordek DG, Vaughan R, Reynolds SL, Kihara G, Raney KD, Kao CC, Cameron CE. Hepatitis C virus nonstructural protein 5A: biochemical characterization of a novel structural class of RNA-binding proteins. J Virol. 2010 Dec;84(24):12480-91. doi: 10.1128/JVI.01319-10. Epub 2010 Oct 6. PMID:20926572 doi:http://dx.doi.org/10.1128/JVI.01319-10
- ↑ Harrus D, Ahmed-El-Sayed N, Simister PC, Miller S, Triconnet M, Hagedorn CH, Mahias K, Rey FA, Astier-Gin T, Bressanelli S. Further insights into the roles of GTP and the C terminus of the hepatitis C virus polymerase in the initiation of RNA synthesis. J Biol Chem. 2010 Oct 22;285(43):32906-18. Epub 2010 Aug 20. PMID:20729191 doi:10.1074/jbc.M110.151316
- ↑ Sherwood AV, Rivera-Rangel LR, Ryberg LA, Larsen HS, Anker KM, Costa R, Vågbø CB, Jakljevič E, Pham LV, Fernandez-Antunez C, Indrisiunaite G, Podolska-Charlery A, Grothen JER, Langvad NW, Fossat N, Offersgaard A, Al-Chaer A, Nielsen L, Kuśnierczyk A, Sølund C, Weis N, Gottwein JM, Holmbeck K, Bottaro S, Ramirez S, Bukh J, Scheel TKH, Vinther J. Hepatitis C virus RNA is 5'-capped with flavin adenine dinucleotide. Nature. 2023 Jul;619(7971):811-818. PMID:37407817 doi:10.1038/s41586-023-06301-3
- ↑ Zhou Y, Muh U, Hanzelka BL, Bartels DJ, Wei Y, Rao BG, Brennan DL, Tigges AM, Swenson L, Kwong AD, Lin C. Phenotypic and structural analyses of hepatitis C virus NS3 protease Arg155 variants: sensitivity to telaprevir (VX-950) and interferon alpha. J Biol Chem. 2007 Aug 3;282(31):22619-28. Epub 2007 Jun 6. PMID:17556358 doi:http://dx.doi.org/M610207200
|