2px8
From Proteopedia
Crystal structure of the Murray Valley Encephalitis Virus NS5 2'-O Methyltransferase domain in complex with SAH and 7M-GTP
Structural highlights
FunctionPOLG_MVEV5 Capsid protein C self-assembles to form an icosahedral capsid about 30 nm in diameter. The capsid encapsulates the genomic RNA (By similarity). prM acts as a chaperone for envelope protein E during intracellular virion assembly by masking and inactivating envelope protein E fusion peptide. prM is matured in the last step of virion assembly, presumably to avoid catastrophic activation of the viral fusion peptide induced by the acidic pH of the trans-Golgi network. After cleavage by host furin, the pr peptide is released in the extracellular medium and small envelope protein M and envelope protein E homodimers are dissociated (By similarity). Envelope protein E binding to host cell surface receptor is followed by virus internalization through clathrin-mediated endocytosis. Envelope protein E is subsequently involved in membrane fusion between virion and host late endosomes. Synthesized as a homodimer with prM which acts as a chaperone for envelope protein E. After cleavage of prM, envelope protein E dissociate from small envelope protein M and homodimerizes (By similarity). Non-structural protein 1 is involved in virus replication and regulation of the innate immune response (By similarity). Non-structural protein 2A may be involved viral RNA replication and capsid assembly (Potential). Non-structural protein 2B is a required cofactor for the serine protease function of NS3 (By similarity). Serine protease NS3 displays three enzymatic activities: serine protease, NTPase and RNA helicase. NS3 serine protease, in association with NS2B, performs its autocleavage and cleaves the polyprotein at dibasic sites in the cytoplasm: C-prM, NS2A-NS2B, NS2B-NS3, NS3-NS4A, NS4A-2K and NS4B-NS5. NS3 RNA helicase binds RNA and unwinds dsRNA in the 3' to 5' direction (By similarity). Non-structural protein 4A induces host endoplasmic reticulum membrane rearrangements leading to the formation of virus-induced membranous vesicles hosting the dsRNA and polymerase, functioning as a replication complex. NS4A might also regulate the ATPase activity of the NS3 helicase (By similarity). Peptide 2k functions as a signal peptide for NS4B and is required for the interferon antagonism activity of the latter (By similarity). Non-structural protein 4B inhibits interferon (IFN)-induced host STAT1 phosphorylation and nuclear translocation, thereby preventing the establishment of cellular antiviral state by blocking the IFN-alpha/beta pathway (By similarity). RNA-directed RNA polymerase NS5 replicates the viral (+) and (-) genome, and performs the capping of genomes in the cytoplasm. NS5 methylates viral RNA cap at guanine N-7 and ribose 2'-O positions. Besides its role in genome replication, also prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) signaling pathway (By similarity). Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedWe have determined the high resolution crystal structure of the methyltransferase domain of the NS5 polypeptide from the Murray Valley encephalitis virus. This domain is unusual in having both the N7 and 2'-O methyltransferase activity required for Cap 1 synthesis. We have also determined structures for complexes of this domain with nucleotides and cap analogues providing information on cap binding, based on which we suggest a model of how the sequential methylation of the N7 and 2'-O groups of the cap may be coordinated. Crystal structure of the Murray Valley encephalitis virus NS5 methyltransferase domain in complex with cap analogues.,Assenberg R, Ren J, Verma A, Walter TS, Alderton D, Hurrelbrink RJ, Fuller SD, Bressanelli S, Owens RJ, Stuart DI, Grimes JM J Gen Virol. 2007 Aug;88(Pt 8):2228-36. PMID:17622627[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
Categories: Large Structures | Alderton D | Assenberg R | Fuller SD | Grimes JM | Hurrelbrink RJ | Owens RJ | Ren J | Stuart DI | Verma A | Walter TS