2q7r
From Proteopedia
Crystal structure of human FLAP with an iodinated analog of MK-591
Structural highlights
DiseaseAL5AP_HUMAN Genetic variations in ALOX5AP may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:601367; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.[1] Note=Genetic variations in ALOX5AP may be associated with susceptibility to myocardial infarction. Involvement in myocardial infarction is however unclear: according to some authors (PubMed:14770184), a 4-SNP haplotype in ALOX5AP confers risk of myocardial infarction, while according to other (PubMed:17304054) ALOX5AP is not implicated in this condition. FunctionAL5AP_HUMAN Required for leukotriene biosynthesis by ALOX5 (5-lipoxygenase). Anchors ALOX5 to the membrane. Binds arachidonic acid, and could play an essential role in the transfer of arachidonic acid to ALOX5. Binds to MK-886, a compound that blocks the biosynthesis of leukotrienes.[2] [3] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedLeukotrienes are proinflammatory products of arachidonic acid oxidation by 5-lipoxygenase that have been shown to be involved in respiratory and cardiovascular diseases. The integral membrane protein FLAP is essential for leukotriene biosynthesis. We describe the x-ray crystal structures of human FLAP in complex with two leukotriene biosynthesis inhibitors at 4.0 and 4.2 angstrom resolution, respectively. The structures show that inhibitors bind in membrane-embedded pockets of FLAP, which suggests how these inhibitors prevent arachidonic acid from binding to FLAP and subsequently being transferred to 5-lipoxygenase, thereby preventing leukotriene biosynthesis. This structural information provides a platform for the development of therapeutics for respiratory and cardiovascular diseases. Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein.,Ferguson AD, McKeever BM, Xu S, Wisniewski D, Miller DK, Yamin TT, Spencer RH, Chu L, Ujjainwalla F, Cunningham BR, Evans JF, Becker JW Science. 2007 Jul 27;317(5837):510-2. Epub 2007 Jun 28. PMID:17600184[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|