2vm0
From Proteopedia
Crystal structure of radiation-induced myoglobin compound II generated after annealing of peroxymyoglobin
Structural highlights
FunctionMYG_HORSE Serves as a reserve supply of oxygen and facilitates the movement of oxygen within muscles. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedMyoglobin has the ability to react with hydrogen peroxide, generating high-valent complexes similar to peroxidases (compounds I and II), and in the presence of excess hydrogen peroxide a third intermediate, compound III, with an oxymyoglobin-type structure is generated from compound II. The compound III is, however, easily one-electron reduced to peroxymyoglobin by synchrotron radiation during crystallographic data collection. We have generated and solved the 1.30 A (1 A=0.1 nm) resolution crystal structure of the peroxymyoglobin intermediate, which is isoelectric to compound 0 and has a Fe-O distance of 1.8 A and O-O bond of 1.3 A in accordance with a Fe(II)-O-O- (or Fe(III)-O-O2-) structure. The generation of the peroxy intermediate through reduction of compound III by X-rays shows the importance of using single-crystal microspectrophotometry when doing crystallography on metalloproteins. After having collected crystallographic data on a peroxy-generated myoglobin crystal, we were able (by a short annealing) to break the O-O bond leading to formation of compound II. These results indicate that the cryoradiolytic-generated peroxymyoglobin is biologically relevant through its conversion into compound II upon heating. Additionally, we have observed that the Xe1 site is occupied by a water molecule, which might be the leaving group in the compound II to compound III reaction. The crystal structure of peroxymyoglobin generated through cryoradiolytic reduction of myoglobin compound III during data collection.,Hersleth HP, Hsiao YW, Ryde U, Gorbitz CH, Andersson KK Biochem J. 2008 Jun 1;412(2):257-64. PMID:18215120[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|