2w66
From Proteopedia
BtGH84 in complex with HQ602
Structural highlights
FunctionOGA_BACTN Biological function unknown. Capable of hydrolyzing the glycosidic link of O-GlcNAcylated proteins. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHere we report the synthesis of a series of polyhydroxylated 3- and 5-acetamido azepanes and detail the molecular basis of their inhibition of family 84 glycoside hydrolases. These family 84 enzymes include human O-GlcNAcase, an enzyme involved in post-translational processing of intracellular proteins modified by O-linked beta-N-acetylglucosamine residues. Detailed structural analysis of the binding of these azepanes to BtGH84, a bacterial homologue of O-GlcNAcase, highlights their conformational flexibility. Molecular mechanics and molecular dynamics calculations reveal that binding to the enzyme involves significant conformational distortion of these inhibitors from their preferred solution conformations. The binding of these azepanes provides structural insight into substrate distortion that likely occurs along the reaction coordinate followed by O-GlcNAcase during glycoside hydrolysis. This class of inhibitors may prove to be useful probes for evaluating the conformational itineraries of glycosidases and aid the development of more potent and specific glycosidase inhibitors. Molecular Basis for Inhibition of GH84 Glycoside Hydrolases by Substituted Azepanes: Conformational Flexibility Enables Probing of Substrate Distortion.,Marcelo F, He Y, Yuzwa SA, Nieto L, Jimenez-Barbero J, Sollogoub M, Vocadlo DJ, Davies GD, Bleriot Y J Am Chem Soc. 2009 Mar 30. PMID:19331390[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|