2w6b
From Proteopedia
Crystal Structure of the Trimeric beta-PIX Coiled-Coil Domain
Structural highlights
FunctionARHG7_RAT Acts as a RAC1 guanine nucleotide exchange factor (GEF) and can induce membrane ruffling. Functions in cell migration, attachment and cell spreading. Promotes targeting of RAC1 to focal adhesions. May function as a positive regulator of apoptosis. Downstream of NMDA receptors and CaMKK-CaMK1 signaling cascade, promotes the formation of spines and synapses in hippocampal neurons (By similarity). Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedGIT (G protein-coupled receptor kinase-interacting protein) and PIX (p21-activated kinase-interacting exchange factor) family proteins integrate signaling pathways involving Arf and Rho family GTPases. GIT1 and beta-PIX form a constitutively associated complex that acts as a scaffold to allow the formation of large multiprotein assemblies that regulate synaptogenesis, cell polarity and cell migration among other physiological processes. Complex formation is mediated by the GIT binding domain (GBD) in beta-PIX, which recognizes the Spa homology domain of GIT1. Both binding domains are adjacent to predicted coiled-coil (CC) segments that allow homo-oligomerization of GIT1 and beta-PIX, respectively. Oligomerization of GIT and PIX proteins is important for their physiological functions, and deletion of the CC domains interferes with correct subcellular localization and the GEF (guanine nucleotide exchange factor) activity of PIX. We have solved the crystal structures of the CC domains of GIT1 and beta-PIX and determined the stoichiometry of complex formation between the two proteins in order to understand the molecular architecture of the GIT1-beta-PIX complex. The crystal structure of the CC domain of GIT1 solved at 1.4-A resolution shows a dimeric, parallel CC that spans 67 A in length. Unexpectedly, and in contrast to prevalent dimeric models, the structure of the CC region of beta-PIX determined at 2.8-A resolution, combined with hydrodynamic studies, reveals that this protein forms a parallel trimer. Furthermore, we demonstrate that dimeric GIT and trimeric PIX form an unusual high-affinity heteropentameric complex in which each Spa homology domain of the GIT1 dimer recognizes one GBD of the beta-PIX trimer, leaving one GBD unoccupied. These results can serve as a basis to better understand oligomerization-dependent GIT1-beta-PIX-regulated signaling events and provide an insight into the architecture of large signaling complexes involving GIT1 and beta-PIX. Structures of Dimeric GIT1 and Trimeric beta-PIX and Implications for GIT-PIX Complex Assembly.,Schlenker O, Rittinger K J Mol Biol. 2008 Dec 30. PMID:19136011[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|