2z60
From Proteopedia
Crystal Structure of the T315I Mutant of Abl kinase bound with PPY-A
Structural highlights
FunctionABL1_MOUSE Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9. Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-191' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedImatinib (Gleevec) is currently the frontline therapy for chronic myeloid leukemia (CML), a disease characterized by the presence of a constitutively activated chimeric tyrosine kinase protein Bcr-AbI. However, drug resistance often occurs at later stages of the disease, principally because of the occurrence of mutations in the kinase domain. Second generation Bcr-AbI inhibitors, such as dasatinib and nilotinib are capable of inhibiting many imatinib-resistant forms of the kinase but not the form in which threonine is mutated to isoleucine at the gatekeeper position (T315I). In this study, we present the crystal structure of the kinase domain of the c-AbI T315I mutant, as well as the wild-type form, in complex with a pyrrolopyridine inhibitor, PPY-A. The side chain of Ile315 is accommodated in the AbI T315I mutant structure without large conformational changes proximal to the site of mutation. In contrast to other inhibitors, such as imatinib and dasatinib, PPY-A does not occupy the hydrophobic pocket behind the gatekeeper residue. This binding mode, coupled with augmented contacts with the glycine-rich loop, appears to be critical for its ability to override the T315I mutation. The data presented here may provide structural guidance for the design of clinically useful inhibitors of Bcr-AbI T315I. Crystal structure of the T315I mutant of AbI kinase.,Zhou T, Parillon L, Li F, Wang Y, Keats J, Lamore S, Xu Q, Shakespeare W, Dalgarno D, Zhu X Chem Biol Drug Des. 2007 Sep;70(3):171-81. PMID:17718712[12] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|