3eu7

From Proteopedia

Jump to: navigation, search
3eu7, resolution 2.20Å ()
Ligands:
Non-Standard Residues:
Gene: PALB2 (HUMAN)


Resources: FirstGlance, OCA, RCSB, PDBsum
Coordinates: save as pdb, mmCIF, xml


Contents

Crystal Structure of a PALB2 / BRCA2 complex

Publication Abstract from PubMed

The breast cancer 2, early onset protein (BRCA2) is central to the repair of DNA damage by homologous recombination. BRCA2 recruits the recombinase RAD51 to sites of damage, regulates its assembly into nucleoprotein filaments and thereby promotes homologous recombination. Localization of BRCA2 to nuclear foci requires its association with the partner and localizer of BRCA2 (PALB2), mutations in which are associated with cancer predisposition, as well as subtype N of Fanconi anaemia. We have determined the structure of the PALB2 carboxy-terminal beta-propeller domain in complex with a BRCA2 peptide. The structure shows the molecular determinants of this important protein-protein interaction and explains the effects of both cancer-associated truncating mutants in PALB2 and missense mutations in the amino-terminal region of BRCA2.

Structural basis for recruitment of BRCA2 by PALB2., Oliver AW, Swift S, Lord CJ, Ashworth A, Pearl LH, EMBO Rep. 2009 Sep;10(9):990-6. Epub 2009 Jul 17. PMID:19609323

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Disease

[PALB2_HUMAN] Defects in PALB2 are a cause of susceptibility to breast cancer (BC) [MIM:114480]. A common malignancy originating from breast epithelial tissue. Breast neoplasms can be distinguished by their histologic pattern. Invasive ductal carcinoma is by far the most common type. Breast cancer is etiologically and genetically heterogeneous. Important genetic factors have been indicated by familial occurrence and bilateral involvement. Mutations at more than one locus can be involved in different families or even in the same case. Note=Breast cancer susceptibility is strongly associated with PALB2 truncating mutations. Conversely, rare missense mutations do not strongly influence breast cancer risk (PubMed:22241545). Defects in PALB2 are the cause of Fanconi anemia complementation group N (FANCN) [MIM:610832]. It is a disorder affecting all bone marrow elements and resulting in anemia, leukopenia and thrombopenia. It is associated with cardiac, renal and limb malformations, dermal pigmentary changes, and a predisposition to the development of malignancies. At the cellular level it is associated with hypersensitivity to DNA-damaging agents, chromosomal instability (increased chromosome breakage) and defective DNA repair.[1] Defects in PALB2 are the cause of pancreatic cancer type 3 (PNCA3) [MIM:613348]. It is a malignant neoplasm of the pancreas. Tumors can arise from both the exocrine and endocrine portions of the pancreas, but 95% of them develop from the exocrine portion, including the ductal epithelium, acinar cells, connective tissue, and lymphatic tissue.[2] [BRCA2_HUMAN] Defects in BRCA2 are a cause of susceptibility to breast cancer (BC) [MIM:114480]. A common malignancy originating from breast epithelial tissue. Breast neoplasms can be distinguished by their histologic pattern. Invasive ductal carcinoma is by far the most common type. Breast cancer is etiologically and genetically heterogeneous. Important genetic factors have been indicated by familial occurrence and bilateral involvement. Mutations at more than one locus can be involved in different families or even in the same case.[3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] Defects in BRCA2 are the cause of pancreatic cancer type 2 (PNCA2) [MIM:613347]. It is a malignant neoplasm of the pancreas. Tumors can arise from both the exocrine and endocrine portions of the pancreas, but 95% of them develop from the exocrine portion, including the ductal epithelium, acinar cells, connective tissue, and lymphatic tissue.[23] Defects in BRCA2 are a cause of susceptibility to familial breast-ovarian cancer type 2 (BROVCA2) [MIM:612555]. A condition associated with familial predisposition to cancer of the breast and ovaries. Characteristic features in affected families are an early age of onset of breast cancer (often before age 50), increased chance of bilateral cancers (cancer that develop in both breasts, or both ovaries, independently), frequent occurrence of breast cancer among men, increased incidence of tumors of other specific organs, such as the prostate. Defects in BRCA2 are the cause of Fanconi anemia complementation group D type 1 (FANCD1) [MIM:605724]. It is a disorder affecting all bone marrow elements and resulting in anemia, leukopenia and thrombopenia. It is associated with cardiac, renal and limb malformations, dermal pigmentary changes, and a predisposition to the development of malignancies. At the cellular level it is associated with hypersensitivity to DNA-damaging agents, chromosomal instability (increased chromosome breakage) and defective DNA repair.[24] [25] [26] Defects in BRCA2 are a cause of glioma type 3 (GLM3) [MIM:613029]. Gliomas are benign or malignant central nervous system neoplasms derived from glial cells. They comprise astrocytomas and glioblastoma multiforme that are derived from astrocytes, oligodendrogliomas derived from oligodendrocytes and ependymomas derived from ependymocytes.[27]

Function

[PALB2_HUMAN] Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks. Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination. Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51. Essential partner of BRCA2 that promotes the localization and stability of BRCA2. Also enables its recombinational repair and checkpoint functions of BRCA2. May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation. Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures.[28] [29] [30] [31] [32] [BRCA2_HUMAN] Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. In concert with NPM1, regulates centrosome duplication.[33] [34] [35] [36] [37] [38] [39] [40]

About this Structure

3eu7 is a 2 chain structure with sequence from Human. Full crystallographic information is available from OCA.

Reference

  • Oliver AW, Swift S, Lord CJ, Ashworth A, Pearl LH. Structural basis for recruitment of BRCA2 by PALB2. EMBO Rep. 2009 Sep;10(9):990-6. Epub 2009 Jul 17. PMID:19609323 doi:10.1038/embor.2009.126
  1. Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q, Pals G, Errami A, Gluckman E, Llera J, Wang W, Livingston DM, Joenje H, de Winter JP. Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet. 2007 Feb;39(2):159-61. Epub 2006 Dec 31. PMID:17200672 doi:10.1038/ng1942
  2. Jones S, Hruban RH, Kamiyama M, Borges M, Zhang X, Parsons DW, Lin JC, Palmisano E, Brune K, Jaffee EM, Iacobuzio-Donahue CA, Maitra A, Parmigiani G, Kern SE, Velculescu VE, Kinzler KW, Vogelstein B, Eshleman JR, Goggins M, Klein AP. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science. 2009 Apr 10;324(5924):217. doi: 10.1126/science.1171202. Epub 2009 Mar, 5. PMID:19264984 doi:10.1126/science.1171202
  3. Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, Christ N, Liu X, Jasin M, Couch FJ, Livingston DM. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell. 2006 Jun 23;22(6):719-29. PMID:16793542 doi:10.1016/j.molcel.2006.05.022
  4. Miki Y, Katagiri T, Kasumi F, Yoshimoto T, Nakamura Y. Mutation analysis in the BRCA2 gene in primary breast cancers. Nat Genet. 1996 Jun;13(2):245-7. PMID:8640237 doi:10.1038/ng0696-245
  5. Vehmanen P, Friedman LS, Eerola H, Sarantaus L, Pyrhonen S, Ponder BA, Muhonen T, Nevanlinna H. A low proportion of BRCA2 mutations in Finnish breast cancer families. Am J Hum Genet. 1997 May;60(5):1050-8. PMID:9150152
  6. Ganguly T, Dhulipala R, Godmilow L, Ganguly A. High throughput fluorescence-based conformation-sensitive gel electrophoresis (F-CSGE) identifies six unique BRCA2 mutations and an overall low incidence of BRCA2 mutations in high-risk BRCA1-negative breast cancer families. Hum Genet. 1998 May;102(5):549-56. PMID:9654203
  7. Katagiri T, Kasumi F, Yoshimoto M, Nomizu T, Asaishi K, Abe R, Tsuchiya A, Sugano M, Takai S, Yoneda M, Fukutomi T, Nanba K, Makita M, Okazaki H, Hirata K, Okazaki M, Furutsuma Y, Morishita Y, Iino Y, Karino T, Ayabe H, Hara S, Kajiwara T, Houga S, Miki Y, et al.. High proportion of missense mutations of the BRCA1 and BRCA2 genes in Japanese breast cancer families. J Hum Genet. 1998;43(1):42-8. PMID:9609997 doi:10.1007/s100380050035
  8. Wagner TM, Hirtenlehner K, Shen P, Moeslinger R, Muhr D, Fleischmann E, Concin H, Doeller W, Haid A, Lang AH, Mayer P, Petru E, Ropp E, Langbauer G, Kubista E, Scheiner O, Underhill P, Mountain J, Stierer M, Zielinski C, Oefner P. Global sequence diversity of BRCA2: analysis of 71 breast cancer families and 95 control individuals of worldwide populations. Hum Mol Genet. 1999 Mar;8(3):413-23. PMID:9971877
  9. Sinilnikova OM, Egan KM, Quinn JL, Boutrand L, Lenoir GM, Stoppa-Lyonnet D, Desjardins L, Levy C, Goldgar D, Gragoudas ES. Germline brca2 sequence variants in patients with ocular melanoma. Int J Cancer. 1999 Jul 30;82(3):325-8. PMID:10399947
  10. Plaschke J, Commer T, Jacobi C, Schackert HK, Chang-Claude J. BRCA2 germline mutations among early onset breast cancer patients unselected for family history of the disease. J Med Genet. 2000 Sep;37(9):E17. PMID:10978364
  11. Kwiatkowska E, Teresiak M, Lamperska KM, Karczewska A, Breborowicz D, Stawicka M, Godlewski D, Krzyzosiak WJ, Mackiewicz A. BRCA2 germline mutations in male breast cancer patients in the Polish population. Hum Mutat. 2001;17(1):73. PMID:11139248 doi:<73::AID-HUMU12>3.0.CO;2-O 10.1002/1098-1004(2001)17:1<73::AID-HUMU12>3.0.CO;2-O
  12. Edwards SM, Kote-Jarai Z, Hamoudi R, Eeles RA. An improved high throughput heteroduplex mutation detection system for screening BRCA2 mutations-fluorescent mutation detection (F-MD). Hum Mutat. 2001 Mar;17(3):220-32. PMID:11241844 doi:10.1002/humu.7
  13. Fackenthal JD, Cartegni L, Krainer AR, Olopade OI. BRCA2 T2722R is a deleterious allele that causes exon skipping. Am J Hum Genet. 2002 Sep;71(3):625-31. Epub 2002 Jul 19. PMID:12145750 doi:S0002-9297(07)60342-5
  14. Jakubowska A, Nej K, Huzarski T, Scott RJ, Lubinski J. BRCA2 gene mutations in families with aggregations of breast and stomach cancers. Br J Cancer. 2002 Oct 7;87(8):888-91. PMID:12373604 doi:10.1038/sj.bjc.6600562
  15. Zhi X, Szabo C, Chopin S, Suter N, Wang QS, Ostrander EA, Sinilnikova OM, Lenoir GM, Goldgar D, Shi YR. BRCA1 and BRCA2 sequence variants in Chinese breast cancer families. Hum Mutat. 2002 Dec;20(6):474. PMID:12442274 doi:10.1002/humu.9083
  16. Ruiz-Flores P, Sinilnikova OM, Badzioch M, Calderon-Garciduenas AL, Chopin S, Fabrice O, Gonzalez-Guerrero JF, Szabo C, Lenoir G, Goldgar DE, Barrera-Saldana HA. BRCA1 and BRCA2 mutation analysis of early-onset and familial breast cancer cases in Mexico. Hum Mutat. 2002 Dec;20(6):474-5. PMID:12442275 doi:10.1002/humu.9084
  17. Kwiatkowska E, Teresiak M, Breborowicz D, Mackiewicz A. Somatic mutations in the BRCA2 gene and high frequency of allelic loss of BRCA2 in sporadic male breast cancer. Int J Cancer. 2002 Apr 20;98(6):943-5. PMID:11948477
  18. Meyer P, Voigtlaender T, Bartram CR, Klaes R. Twenty-three novel BRCA1 and BRCA2 sequence alterations in breast and/or ovarian cancer families in Southern Germany. Hum Mutat. 2003 Sep;22(3):259. PMID:12938098 doi:http://dx.doi.org/10.1002/humu.9174
  19. Claes K, Poppe B, Coene I, Paepe AD, Messiaen L. BRCA1 and BRCA2 germline mutation spectrum and frequencies in Belgian breast/ovarian cancer families. Br J Cancer. 2004 Mar 22;90(6):1244-51. PMID:15026808 doi:10.1038/sj.bjc.6601656
  20. Hadjisavvas A, Charalambous E, Adamou A, Neuhausen SL, Christodoulou CG, Kyriacou K. Hereditary breast and ovarian cancer in Cyprus: identification of a founder BRCA2 mutation. Cancer Genet Cytogenet. 2004 Jun;151(2):152-6. PMID:15172753 doi:10.1016/j.cancergencyto.2003.09.020
  21. Valarmathi MT, Sawhney M, Deo SS, Shukla NK, Das SN. Novel germline mutations in the BRCA1 and BRCA2 genes in Indian breast and breast-ovarian cancer families. Hum Mutat. 2004 Feb;23(2):205. PMID:14722926 doi:10.1002/humu.9213
  22. Seo JH, Cho DY, Ahn SH, Yoon KS, Kang CS, Cho HM, Lee HS, Choe JJ, Choi CW, Kim BS, Shin SW, Kim YH, Kim JS, Son GS, Lee JB, Koo BH. BRCA1 and BRCA2 germline mutations in Korean patients with sporadic breast cancer. Hum Mutat. 2004 Oct;24(4):350. PMID:15365993 doi:10.1002/humu.9275
  23. Ozcelik H, Schmocker B, Di Nicola N, Shi XH, Langer B, Moore M, Taylor BR, Narod SA, Darlington G, Andrulis IL, Gallinger S, Redston M. Germline BRCA2 6174delT mutations in Ashkenazi Jewish pancreatic cancer patients. Nat Genet. 1997 May;16(1):17-8. PMID:9140390 doi:10.1038/ng0597-17
  24. Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, De Die-Smulders C, Persky N, Grompe M, Joenje H, Pals G, Ikeda H, Fox EA, D'Andrea AD. Biallelic inactivation of BRCA2 in Fanconi anemia. Science. 2002 Jul 26;297(5581):606-9. Epub 2002 Jun 13. PMID:12065746 doi:10.1126/science.1073834
  25. Hirsch B, Shimamura A, Moreau L, Baldinger S, Hag-alshiekh M, Bostrom B, Sencer S, D'Andrea AD. Association of biallelic BRCA2/FANCD1 mutations with spontaneous chromosomal instability and solid tumors of childhood. Blood. 2004 Apr 1;103(7):2554-9. Epub 2003 Dec 11. PMID:14670928 doi:10.1182/blood-2003-06-1970
  26. Alter BP, Rosenberg PS, Brody LC. Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2. J Med Genet. 2007 Jan;44(1):1-9. Epub 2006 Jul 6. PMID:16825431 doi:jmg.2006.043257
  27. Reid S, Renwick A, Seal S, Baskcomb L, Barfoot R, Jayatilake H, Pritchard-Jones K, Stratton MR, Ridolfi-Luthy A, Rahman N. Biallelic BRCA2 mutations are associated with multiple malignancies in childhood including familial Wilms tumour. J Med Genet. 2005 Feb;42(2):147-51. PMID:15689453 doi:10.1136/jmg.2004.022673
  28. Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, Christ N, Liu X, Jasin M, Couch FJ, Livingston DM. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell. 2006 Jun 23;22(6):719-29. PMID:16793542 doi:10.1016/j.molcel.2006.05.022
  29. Sy SM, Huen MS, Zhu Y, Chen J. PALB2 regulates recombinational repair through chromatin association and oligomerization. J Biol Chem. 2009 Jul 3;284(27):18302-10. doi: 10.1074/jbc.M109.016717. Epub 2009, May 7. PMID:19423707 doi:10.1074/jbc.M109.016717
  30. Sy SM, Huen MS, Chen J. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7155-60. doi:, 10.1073/pnas.0811159106. Epub 2009 Apr 15. PMID:19369211 doi:10.1073/pnas.0811159106
  31. Buisson R, Dion-Cote AM, Coulombe Y, Launay H, Cai H, Stasiak AZ, Stasiak A, Xia B, Masson JY. Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat Struct Mol Biol. 2010 Oct;17(10):1247-54. doi: 10.1038/nsmb.1915. Epub 2010, Sep 26. PMID:20871615 doi:10.1038/nsmb.1915
  32. Dray E, Etchin J, Wiese C, Saro D, Williams GJ, Hammel M, Yu X, Galkin VE, Liu D, Tsai MS, Sy SM, Schild D, Egelman E, Chen J, Sung P. Enhancement of RAD51 recombinase activity by the tumor suppressor PALB2. Nat Struct Mol Biol. 2010 Oct;17(10):1255-9. doi: 10.1038/nsmb.1916. Epub 2010, Sep 26. PMID:20871616 doi:10.1038/nsmb.1916
  33. Hussain S, Wilson JB, Medhurst AL, Hejna J, Witt E, Ananth S, Davies A, Masson JY, Moses R, West SC, de Winter JP, Ashworth A, Jones NJ, Mathew CG. Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Hum Mol Genet. 2004 Jun 15;13(12):1241-8. Epub 2004 Apr 28. PMID:15115758 doi:10.1093/hmg/ddh135
  34. Wang X, Andreassen PR, D'Andrea AD. Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol Cell Biol. 2004 Jul;24(13):5850-62. PMID:15199141 doi:10.1128/MCB.24.13.5850-5862.2004
  35. Ohashi A, Zdzienicka MZ, Chen J, Couch FJ. Fanconi anemia complementation group D2 (FANCD2) functions independently of BRCA2- and RAD51-associated homologous recombination in response to DNA damage. J Biol Chem. 2005 Apr 15;280(15):14877-83. Epub 2005 Jan 25. PMID:15671039 doi:M414669200
  36. Bahassi EM, Ovesen JL, Riesenberg AL, Bernstein WZ, Hasty PE, Stambrook PJ. The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage. Oncogene. 2008 Jun 26;27(28):3977-85. doi: 10.1038/onc.2008.17. Epub 2008 Mar 3. PMID:18317453 doi:10.1038/onc.2008.17
  37. Liu J, Doty T, Gibson B, Heyer WD. Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol. 2010 Oct;17(10):1260-2. doi: 10.1038/nsmb.1904. Epub 2010, Aug 22. PMID:20729859 doi:10.1038/nsmb.1904
  38. Thorslund T, McIlwraith MJ, Compton SA, Lekomtsev S, Petronczki M, Griffith JD, West SC. The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nat Struct Mol Biol. 2010 Oct;17(10):1263-5. doi: 10.1038/nsmb.1905. Epub 2010, Aug 22. PMID:20729858 doi:10.1038/nsmb.1905
  39. Jensen RB, Carreira A, Kowalczykowski SC. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature. 2010 Oct 7;467(7316):678-83. doi: 10.1038/nature09399. PMID:20729832 doi:10.1038/nature09399
  40. Wang HF, Takenaka K, Nakanishi A, Miki Y. BRCA2 and nucleophosmin coregulate centrosome amplification and form a complex with the Rho effector kinase ROCK2. Cancer Res. 2011 Jan 1;71(1):68-77. doi: 10.1158/0008-5472.CAN-10-0030. Epub 2010, Nov 16. PMID:21084279 doi:10.1158/0008-5472.CAN-10-0030

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools